1. Detection, occurrence, influencing factors and environmental risks of paralytic shellfish toxins in seawater in a typical mariculture bay.
- Author
-
Pan L, He X, Chen J, Huang JJ, Wang Y, Liang S, and Wang B
- Subjects
- Chromatography, Liquid methods, Reproducibility of Results, Ecosystem, Tandem Mass Spectrometry methods, Shellfish analysis, Seawater chemistry, Marine Toxins analysis, Bays
- Abstract
Paralytic shellfish toxins (PSTs) producing algae are widely distributed in the global coastal aquatic environment, posing a threat to coastal ecosystem health and mariculture safety. However, the levels and potential environmental risks of PSTs frequently detected in shellfish remain largely unexplored in seawater of mariculture zones. In this study, a new method for trace detection of 13 common PSTs (<1.0 ng/L) in seawater was established based on off-line solid phase extraction (SPE) and on-line SPE-liquid chromatography-tandem mass spectrometry (on-line SPE-LC-MS/MS), and a systematic investigation of PSTs in seawater of the Laizhou Bay, a typical aquaculture bay in China, was conducted to understand their pollution status, environmental impact factors and ecological risks for the first time. Eleven PSTs were detected in the seawater of Laizhou Bay with total concentrations ranging from 0.75 to 349.47 ng/L (mean, 176.27 ng/L), which indicates the rich diversity of PSTs in the mariculture bay and demonstrates the reliability of the proposed analytical method. C1, C2, GTX2, GTX3, dcGTX2, and dcGTX3 were found to be the predominant PSTs, which refreshed the knowledge of PST contamination in the coastal aquatic environment. PST levels in seawater exhibited the highest levels in the southeastern mouth of Laizhou Bay and decreased toward the inner bay. Correlation analyses showed that climatic factors, nutrient status and hydrological conditions had significant effects on the distribution of PST in mariculture bay. Preliminary environmental risk assessments revealed that aquatic organisms throughout the waters of Laizhou Bay are at risk of chronic PST toxicity. These findings imply that the risk of PST in seawater of mariculture bay has previously been grossly underestimated, and that the coastal aquatic environment in North China and even the world may be at more serious risk of PST pollution, which should be taken seriously., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2022 Elsevier Ltd. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF