1. A Numerical Thermal Analysis of a Battery Pack in an Electric Motorbike Application.
- Author
-
Shahjalal, Mohammad, Shams, Tamanna, Hossain, Sadat Bin, Roy, Probir Kumar, Jion, Arafat Alam, Ahsan, Mominul, Chowdhury, Jahedul Islam, Ahmed, Md Rishad, Alam, Syed Bahauddin, and Haider, Julfikar
- Subjects
THERMAL batteries ,ELECTRIC batteries ,NUMERICAL analysis ,THERMAL analysis ,THERMAL stability ,COOLING systems ,ELECTRIC vehicle batteries - Abstract
Today, electric driven motorbikes (e-motorbikes) are facing multiple safety, functionality and operating challenges, particularly in hot climatic conditions. One of them is the increasing demand for efficient battery cooling to avoid the potential thermal stability concerns due to extreme temperatures and the conventional plastic enclosure of the battery pack. A reliable and efficient thermal design can be formulated by accommodating the battery within an appropriate battery housing supported by a cooling configuration. The proposed design includes a battery pack housing made of high conductive materials, such as copper (Cu) and aluminum (Al), with an adequate liquid cooling system. This study first proposes a potted cooling structure for the e-motorbike battery and numerical studies are carried out for a 72 V, 42 Ah battery pack for different ambient temperatures, casing materials, discharge rates, coolant types, and coolant temperatures. Results reveal that up to 53 °C is achievable with only the Cu battery housing material. Further temperature reduction is possible with the help of a liquid cooling system, and in this case, with the use of coolant temperature of 20 °C, the battery temperature can be maintained within 28 °C. The analysis also suggests that the proposed cooling system can keep a safe battery temperature up to a 5C rate. The design was also validated for different accelerated driving scenarios. The proposed conceptual design could be exploited in future e-motorbike battery cooling for optimum thermal stability. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF