1. A cellulose-binding domain specific for native crystalline cellulose in lytic polysaccharide monooxygenase from the brown-rot fungus Gloeophyllum trabeum.
- Author
-
Kojima Y, Sunagawa N, Tagawa S, Hatano T, Aoki M, Kurei T, Horikawa Y, Wada M, Funada R, Igarashi K, and Yoshida M
- Subjects
- Fungal Proteins chemistry, Fungal Proteins metabolism, Fungal Proteins genetics, Protein Domains, Protein Binding, Amino Acid Sequence, Cellulose metabolism, Cellulose chemistry, Mixed Function Oxygenases metabolism, Mixed Function Oxygenases chemistry, Mixed Function Oxygenases genetics, Basidiomycota enzymology
- Abstract
Cellulose-binding domains (CBDs) play a vital role in cellulose degradation by enzymes. Despite the strong ability of brown-rot fungi to degrade cellulose in wood, they have been considered to lack or have a low number of enzymes with CBD. Here, we report the C-terminal domain of a lytic polysaccharide monooxygenase from the brown-rot fungus Gloeophyllum trabeum (GtLPMO9A-2) functions as a CBD, classified as a new family of carbohydrate-binding module, CBM104. The amino acid sequence of GtCBM104 shows no similarity to any known CBDs. A BLAST search identified 84 homologous sequences at the C-terminus of some CAZymes, mainly LPMO9, in basidiomycetous genomes. Binding experiments revealed GtCBM104 binds selectively to native crystalline cellulose (cellulose I), but not to artificially modified crystalline or amorphous cellulose, while the typical fungal CBD (CBM1) bound to all cellulosic materials tested. The adsorption efficiency of GtCBM104 to cellulose I was >20-times higher than that of CBM1. Adsorption tests and microscopic observations strongly suggested that GtCBM104 binds to the hydrophilic regions of cellulose microfibrils, while CBM1 recognizes the hydrophobic surface. The discovery of GtCBM104 strongly suggests that the contribution of CBD to the cellulose enzymatic degradation mechanism of brown-rot fungi is much larger than previously thought., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 The Authors. Published by Elsevier Ltd.. All rights reserved.)
- Published
- 2025
- Full Text
- View/download PDF