1. Overexpression of aprE2, a Fibrinolytic Enzyme Gene from Bacillus subtilis CH3-5, in Escherichia coli and the Properties of AprE2
- Author
-
Seon-Ju Jeong, Chang Kwon Lee, Kye Man Cho, Jong-Sang Kim, Jeong Hwan Kim, Jung-Hye Shin, and Gyoung Min Kim
- Subjects
Molecular Sequence Data ,Protein Renaturation ,Bacillus subtilis ,medicine.disease_cause ,Applied Microbiology and Biotechnology ,chemistry.chemical_compound ,Bacterial Proteins ,Fibrinolytic Agents ,Enzyme Stability ,Escherichia coli ,medicine ,Amino Acid Sequence ,Enzyme kinetics ,chemistry.chemical_classification ,Base Sequence ,biology ,Temperature ,Fibrinogen ,General Medicine ,Hydrogen-Ion Concentration ,biology.organism_classification ,Recombinant Proteins ,Kinetics ,Enzyme ,chemistry ,Biochemistry ,Specific activity ,PMSF ,Sodium acetate ,Biotechnology - Abstract
The aprE2 gene with its prosequence from Bacillus subtilis CH3-5 was overexpressed in Escherichia coli BL21(DE3) by using plasmid pET26b(+). After IPTG induction, active and mature AprE2 was produced when cells were grown at 20°C, whereas inactive and insoluble enzyme was produced in a large amount when cells were grown at 37°C. The insoluble fraction was resuspended with 6 M guanidine-HCl and dialyzed against 2 M Tris-HCl (pH 7.0) or 0.5 M sodium acetate (pH 7.0) buffer. Then active AprE2 was regenerated and purified by a Ni-NTA column. Purified AprE2 from the soluble fraction had a specific activity of 1,069.4 ± 42.4 U/mg protein, higher than that from the renatured insoluble fraction. However, more active AprE2 was obtained by renaturation of the insoluble fraction. AprE2 was most stable at pH 7 and 40°C, respectively. The fibrinolytic activity of AprE2 was inhibited by PMSF, but not by EDTA and metal ions. AprE2 degraded Aα and Bβ chains of fibrinogen quickly, but not the γ-chain. AprE2 exhibited the highest specificity for N-succinyl-Ala-Ala-Pro-Phe-pNA. The Km and kcat/Km of AprE2 was 0.56 mM and 3.10 × 10(4) S(-1) M(-1), respectively.
- Published
- 2014
- Full Text
- View/download PDF