1. An efficient CRISPR/Cas9-based genome editing system for alkaliphilic Bacillus sp. N16-5 and application in engineering xylose utilization for D-lactic acid production.
- Author
-
Huang S, Xue Y, Zhou C, and Ma Y
- Subjects
- CRISPR-Cas Systems, Xylose, Lactic Acid, Gene Editing, Bacillus genetics
- Abstract
Alkaliphiles are considered more suitable chassis than traditional neutrophiles due to their excellent resistance to microbial contamination. Alkaliphilic Bacillus sp. N16-5, an industrially interesting strain with great potential for the production of lactic acid and alkaline polysaccharide hydrolases, can only be engineered genetically by the laborious and time-consuming homologous recombination. In this study, we reported the successful development of a CRISPR/Cas9-based genome editing system with high efficiency for single-gene deletion, large gene fragment deletion and exogenous DNA chromosomal insertion. Moreover, based on a catalytically dead variant of Cas9 (dCas9), we also developed a CRISPRi system to efficiently regulate gene expression. Finally, this efficient genome editing system was successfully applied to engineer the xylose metabolic pathway for the efficient bioproduction of D-lactic acid. Compared with the wild-type Bacillus sp. N16-5, the final engineered strain with XylR deletion and AraE overexpression achieved 34.3% and 27.7% increases in xylose consumption and D-lactic acid production respectively. To our knowledge, this is the first report on the development and application of CRISPR/Cas9-based genome editing system in alkaliphilic Bacillus, and this study will significantly facilitate functional genomic studies and genome manipulation in alkaliphilic Bacillus, laying a foundation for the development of more robust microbial chassis., (© 2022 The Authors. Microbial Biotechnology published by Society for Applied Microbiology and John Wiley & Sons Ltd.)
- Published
- 2022
- Full Text
- View/download PDF