Ander Murua, Philippe Chartier, Jesús María Sanz-Serna, Invariant Preserving SOlvers ( IPSO ), Institut de Recherche Mathématique de Rennes ( IRMAR ), Université de Rennes 1 ( UR1 ), Université de Rennes ( UNIV-RENNES ) -Université de Rennes ( UNIV-RENNES ) -AGROCAMPUS OUEST-École normale supérieure - Rennes ( ENS Rennes ) -Institut National de Recherche en Informatique et en Automatique ( Inria ) -Institut National des Sciences Appliquées ( INSA ) -Université de Rennes 2 ( UR2 ), Université de Rennes ( UNIV-RENNES ) -Centre National de la Recherche Scientifique ( CNRS ) -Université de Rennes 1 ( UR1 ), Université de Rennes ( UNIV-RENNES ) -Centre National de la Recherche Scientifique ( CNRS ) -Inria Rennes – Bretagne Atlantique, Institut National de Recherche en Informatique et en Automatique ( Inria ), Université de Rennes ( UNIV-RENNES ) -Centre National de la Recherche Scientifique ( CNRS ), Konputazio Zientziak eta A.A. Saila [Spain], Universidad del Pais Vasco / Euskal Herriko Unibertsitatea ( UPV/EHU ), Departamento de Matemática Aplicada [Valladolid] ( MA ), Universidad de Valladolid [Valladolid] ( UVa ), Invariant Preserving SOlvers (IPSO), Institut de Recherche Mathématique de Rennes (IRMAR), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-École normale supérieure - Rennes (ENS Rennes)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-INSTITUT AGRO Agrocampus Ouest, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Inria Rennes – Bretagne Atlantique, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro), Universidad del Pais Vasco / Euskal Herriko Unibertsitatea [Espagne] (UPV/EHU), Departamento de Matemática Aplicada [Valladolid] (MA), Universidad de Valladolid [Valladolid] (UVa), AGROCAMPUS OUEST, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Université de Rennes 2 (UR2), Université de Rennes (UNIV-RENNES)-École normale supérieure - Rennes (ENS Rennes)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-AGROCAMPUS OUEST, Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-Inria Rennes – Bretagne Atlantique, and Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)
The paper considers non-autonomous oscillatory systems of ordinary differential equations with d≥1 non-resonant constant frequencies ω 1,…,ω d . Formal series like those used nowadays to analyze the properties of numerical integrators are employed to construct higher-order averaged systems and the required changes of variables. With the new approach, the averaged system and the change of variables consist of vector-valued functions that may be written down immediately and scalar coefficients that are universal in the sense that they do not depend on the specific system being averaged and may therefore be computed once and for all given ω 1,…,ω d . The new method may be applied to obtain a variety of averaged systems. In particular, we study the quasi-stroboscopic averaged system characterized by the property that the true oscillatory solution and the averaged solution coincide at the initial time. We show that quasi-stroboscopic averaging is a geometric procedure, because it is independent of the particular choice of co-ordinates used to write the given system. As a consequence, quasi-stroboscopic averaging of a canonical Hamiltonian (respectively, of a divergence-free) system results in a canonical (respectively, in a divergence-free) averaged system. We also study the averaging of a family of near-integrable systems where our approach may be used to construct explicitly d formal first integrals for both the given system and its quasi-stroboscopic averaged version. As an application we construct three first integrals of a system that arises as a nonlinear perturbation of five coupled harmonic oscillators with one slow frequency and four resonant fast frequencies.