1. Vehicle Detection and Tracking with Roadside LiDAR Using Improved ResNet18 and the Hungarian Algorithm.
- Author
-
Lin, Ciyun, Sun, Ganghao, Wu, Dayong, and Xie, Chen
- Subjects
- *
REAL-time computing , *OPTICAL radar , *LIDAR , *ALGORITHMS , *TRACKING algorithms , *DRIVERLESS cars - Abstract
By the end of the 2020s, full autonomy in autonomous driving may become commercially viable in certain regions. However, achieving Level 5 autonomy requires crucial collaborations between vehicles and infrastructure, necessitating high-speed data processing and low-latency capabilities. This paper introduces a vehicle tracking algorithm based on roadside LiDAR (light detection and ranging) infrastructure to reduce the latency to 100 ms without compromising the detection accuracy. We first develop a vehicle detection architecture based on ResNet18 that can more effectively detect vehicles at a full frame rate by improving the BEV mapping and the loss function of the optimizer. Then, we propose a new three-stage vehicle tracking algorithm. This algorithm enhances the Hungarian algorithm to better match objects detected in consecutive frames, while time–space logicality and trajectory similarity are proposed to address the short-term occlusion problem. Finally, the system is tested on static scenes in the KITTI dataset and the MATLAB/Simulink simulation dataset. The results show that the proposed framework outperforms other methods, with F1-scores of 96.97% and 98.58% for vehicle detection for the KITTI and MATLAB/Simulink datasets, respectively. For vehicle tracking, the MOTA are 88.12% and 90.56%, and the ID-F1 are 95.16% and 96.43%, which are better optimized than the traditional Hungarian algorithm. In particular, it has a significant improvement in calculation speed, which is important for real-time transportation applications. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF