1. Numerical Investigation of 48 V Electrification Potential in Terms of Fuel Economy and Vehicle Performance for a Lambda-1 Gasoline Passenger Car.
- Author
-
Millo, Federico, Accurso, Francesco, Zanelli, Alessandro, and Rolando, Luciano
- Subjects
RURAL electrification ,AUTOMOTIVE fuel consumption ,AUTOMOBILE power trains ,SPARK ignition engines ,ELECTRIFICATION ,GASOLINE ,VEHICLE models ,FUEL - Abstract
Real Driving Emissions (RDE) regulations require the adoption of stoichiometric operation across the entire engine map for downsized turbocharged gasoline engines, which have been so far generally exploiting spark timing retard and mixture enrichment for knock mitigation. However, stoichiometric operation has a detrimental effect on engine and vehicle performances if no countermeasures are taken, such as alternative approaches for knock mitigation, as the exploitation of Miller cycle and/or powertrain electrification to improve vehicle acceleration performance. This research activity aims, therefore, to assess the potential of 48 V electrification and of the adoption of Miller cycle for a downsized and stoichiometric turbocharged gasoline engine. An integrated vehicle and powertrain model was developed for a reference passenger car, equipped with a EU5 gasoline turbocharged engine. Afterwards, two different 48 V electrified powertrain concepts, one featuring a Belt Starter Generator (BSG) mild-hybrid architecture, the other featuring, in addition to the BSG, a Miller cycle engine combined with an e-supercharger were developed and investigated. Vehicle performances were evaluated both in terms of elasticity maneuvers and of CO
2 emissions for type approval and RDE driving cycles. Numerical simulations highlighted potential improvements up to 16% CO2 reduction on RDE driving cycle of a 48 V electrified vehicle featuring a high efficiency powertrain with respect to a EU5 engine and more than 10% of transient performance improvement. [ABSTRACT FROM AUTHOR]- Published
- 2019
- Full Text
- View/download PDF