1. Low-Intensity Ultrasound Causes Direct Excitation of Auditory Cortical Neurons.
- Author
-
Qi X, Lyu K, Meng L, Li C, Zhang H, Niu L, Lin Z, Zheng H, and Tang J
- Subjects
- Action Potentials, Animals, Cells, Cultured, Cochlear Implants, Deafness therapy, Electrophysiological Phenomena, Female, HEK293 Cells, Humans, Mice, Mice, Inbred C57BL, Pregnancy, Primary Cell Culture, Proto-Oncogene Proteins c-fos metabolism, Auditory Cortex cytology, Auditory Cortex radiation effects, Neurons radiation effects, Ultrasonics
- Abstract
Cochlear implantation is the first-line treatment for severe and profound hearing loss in children and adults. However, deaf patients with cochlear malformations or with cochlear nerve deficiencies are ineligible for cochlear implants. Meanwhile, the limited spatial selectivity and high risk of invasive craniotomy restrict the wide application of auditory brainstem implants. A noninvasive alternative strategy for safe and effective neuronal stimulation is urgently needed to address this issue. Because of its advantage in neural modulation over electrical stimulation, low-intensity ultrasound (US) is considered a safe modality for eliciting neural activity in the central auditory system. Although the neural modulation ability of low-intensity US has been demonstrated in the human primary somatosensory cortex and primary visual cortex, whether low-intensity US can directly activate auditory cortical neurons is still a topic of debate. To clarify the direct effects on auditory neurons, in the present study, we employed low-intensity US to stimulate auditory cortical neurons in vitro. Our data show that both low-frequency (0.8 MHz) and high-frequency (>27 MHz) US stimulation can elicit the inward current and action potentials in cultured neurons. c-Fos staining results indicate that low-intensity US is efficient for stimulating most neurons. Our study suggests that low-intensity US can excite auditory cortical neurons directly, implying that US-induced neural modulation can be a potential approach for activating the auditory cortex of deaf patients., Competing Interests: The authors declare that there is no conflict of interest regarding the publication of this paper., (Copyright © 2021 Xiaofei Qi et al.)
- Published
- 2021
- Full Text
- View/download PDF