1. Visual Attention Modulates Glutamate-Glutamine Levels in Vestibular Cortex: Evidence from Magnetic Resonance Spectroscopy.
- Author
-
Frank SM, Forster L, Pawellek M, Malloni WM, Ahn S, Tse PU, and Greenlee MW
- Subjects
- Adult, Female, Humans, Magnetic Resonance Spectroscopy, Male, Photic Stimulation, Visual Perception physiology, Young Adult, Attention physiology, Cerebral Cortex physiology, Glutamic Acid metabolism, Glutamine metabolism
- Abstract
Attending to a stimulus enhances the neuronal responses to it, while responses to nonattended stimuli are not enhanced and may even be suppressed. Although the neural mechanisms of response enhancement for attended stimuli have been intensely studied, the neural mechanisms underlying attentional suppression remain largely unknown. It is uncertain whether attention acts to suppress the processing in sensory cortical areas that would otherwise process the nonattended stimulus or the subcortical input to these cortical areas. Moreover, the neurochemical mechanisms inducing a reduction or suppression of neuronal responses to nonattended stimuli are as yet unknown. Here, we investigated how attention directed toward visual processing cross-modally acts to suppress vestibular responses in the human brain. By using functional magnetic resonance spectroscopy in a group of female and male subjects, we find that attention to visual motion downregulates in a load-dependent manner the concentration of excitatory neurotransmitter (glutamate and its precursor glutamine, referred to together as Glx) within the parietoinsular vestibular cortex (PIVC), a core cortical area of the vestibular system, while leaving the concentration of inhibitory neurotransmitter (GABA) in PIVC unchanged. This makes PIVC less responsive to excitatory thalamic vestibular input, as corroborated by functional magnetic resonance imaging. Together, our results suggest that attention acts to suppress the processing of nonattended sensory cues cortically by neurochemically rendering the core cortical area of the nonattended sensory modality less responsive to excitatory thalamic input. SIGNIFICANCE STATEMENT Here, we address a fundamental problem that has eluded attention research for decades, namely, how the brain ignores irrelevant stimuli. To date, three classes of solutions to this problem have been proposed: (1) enhancement of GABAergic interneuron activity in cortex, (2) downregulation of glutamatergic cell activity in cortex; and (3) downregulation of neural activity in thalamic projection areas, which would then provide the cortex with less input. Here, we use magnetic resonance spectroscopy in humans and find support for the second hypothesis, implying that attention to one sensory modality involves the suppression of irrelevant stimuli of another sensory modality by downregulating glutamate in the cortex., (Copyright © 2021 the authors.)
- Published
- 2021
- Full Text
- View/download PDF