1. Spatial modulation of nanopattern dimensions by combining interference lithography and grayscale-patterned secondary exposure
- Author
-
Zhuofei Gan, Hongtao Feng, Liyang Chen, Siyi Min, Chuwei Liang, Menghong Xu, Zijie Jiang, Zhao Sun, Chuying Sun, Dehu Cui, and Wen-Di Li
- Subjects
Atomic and Molecular Physics, and Optics ,Electronic, Optical and Magnetic Materials - Abstract
Functional nanostructures are exploited for a variety of cutting-edge fields including plasmonics, metasurfaces, and biosensors, just to name a few. Some applications require nanostructures with uniform feature sizes while others rely on spatially varying morphologies. However, fine manipulation of the feature size over a large area remains a substantial challenge because mainstream approaches to precise nanopatterning are based on low-throughput pixel-by-pixel processing, such as those utilizing focused beams of photons, electrons, or ions. In this work, we provide a solution toward wafer-scale, arbitrary modulation of feature size distribution by introducing a lithographic portfolio combining interference lithography (IL) and grayscale-patterned secondary exposure (SE). Employed after the high-throughput IL, a SE with patterned intensity distribution spatially modulates the dimensions of photoresist nanostructures. Based on this approach, we successfully fabricated 4-inch wafer-scale nanogratings with uniform linewidths of
- Published
- 2022
- Full Text
- View/download PDF