The Antarctic ice sheet constitutes the largest reservoir of freshwater on earth, representing tens of meters of sea level rise if it were to melt completely. However, because of the remote location of the continent and the concomitant sparse data coverage, much remains unknown regarding the climate variability in Antarctica and the surrounding Southern Ocean. This study uses the high-resolution ECMWF Interim Re-Analysis (ERA-Interim) data during 1979-2010 to calculate the meridional moisture transport associated with the mean circulation, planetary waves, and synoptic-scale systems. The resulting moisture flux, which is dominated by the synoptic scales, is largely consistent with results from theoretical assumptions and previous studies. Here, high interannual and regional variability in the total meridional moisture flux is found, with no significant trend over the last 30 years. Further, the variability of the meridional moisture flux cannot be explained by the southern annular mode or El Niño-Southern Oscillation, even in the Pacific sector. In addition, the Amundsen Sea sector experiences the highest variability in meridional moisture transport and reveals a statistically significant decrease in the moisture flux at synoptic scales along the coastal zone. These results suggest that the Amundsen Sea provides a window on the complex nature of atmospheric moisture transport in the high southern latitudes. [ABSTRACT FROM AUTHOR]