7 results on '"Maenhaut, W."'
Search Results
2. Characteristics of carbonaceous aerosols in ambient PM10 and PM2.5 particles in Dar es Salaam, Tanzania.
- Author
-
Mkoma SL, Chi X, and Maenhaut W
- Subjects
- Aerosols chemistry, Air Pollutants chemistry, Carbon chemistry, Environmental Monitoring methods, Kinetics, Organic Chemicals analysis, Particle Size, Seasons, Tanzania, Aerosols analysis, Air Pollutants analysis, Atmosphere chemistry, Carbon analysis, Particulate Matter analysis
- Abstract
Ambient daytime and nighttime PM(10) and PM(2.5) samples were collected in parallel at a kerbside in Dar es Salaam in August and September 2005 (dry season) and in April and May 2006 (wet season). All samples were analyzed for the particulate matter mass, for organic, elemental, and total carbon (OC, EC, and TC), and for water-soluble OC (WSOC). The average PM(10) and PM(2.5) mass concentrations and associated standard deviations were 76+/-32microg/m(3) and 26+/-7microg/m(3) for the 2005 dry season and 52+/-27microg/m(3) and 19+/-10microg/m(3) for the 2006 wet season campaign. On average, TC accounted for 29% of the PM(10) mass and 49% of the PM(2.5) mass for the 2005 dry season campaign and the corresponding values for the 2006 wet season campaign were 35% and 59%. There was little difference between the two campaigns for the WSOC/OC ratios with the PM(2.5) fraction having higher ratios than the PM(10) fraction during each campaign. Also for EC/TC higher ratios were noted in PM(2.5) than in PM(10), but the ratios were substantially larger in the 2006 wet season than in the 2005 dry season. The large EC/TC ratios (means 0.22-0.38) reflect the substantial impact from traffic at Dar es Salaam, as was also apparent from the clear diurnal variation in OC levels, with higher values during the day. A simple source apportionment approach was used to apportion the OC to traffic and charcoal burning. On average, 70% of the PM(10) OC was attributed to traffic and 30% to charcoal burning in both campaigns. A definite explanation for the substantially larger EC/TC ratios in the 2006 campaign as compared to the 2005 campaign is not available.
- Published
- 2010
- Full Text
- View/download PDF
3. Characterization of atmospheric aerosols at a forested site in central Europe.
- Author
-
Kourtchev I, Copolovici L, Claeys M, and Maenhaut W
- Subjects
- Aerosols analysis, Cyclohexenes, Glutarates chemistry, Hungary, Ions, Limonene, Malates chemistry, Nitrates analysis, Oxalic Acid chemistry, Particle Size, Quaternary Ammonium Compounds analysis, Succinic Acid chemistry, Sulfates analysis, Terpenes, Tricarboxylic Acids chemistry, Air Pollutants analysis, Atmosphere, Environmental Monitoring methods, Trees
- Abstract
Mass concentrations, mass size distributions, time series, and diel variations for organic tracers and major inorganic ions in aerosols from K-puszta, Hungary, during a 2003 summer period are reported. Emphasis was placed on alpha-beta-pinene secondary organic aerosol (SOA) tracers comprising cis-pinic acid, 3-hydroxyglutaric acid, and 3-methyl-1,2,3-butanetricarboxylic acid. Only cis-pinic acid and the d-limonene SOA tracer 3-carboxyheptanedioic acid exhibited diel variations with highest concentrations at night Malic acid was fairly well correlated with succinic and oxalic acid, pointing to a similar SOA formation process. No day-night variations were observed for the latter acids, suggesting that they are formed over relatively longtime scales. Of the ionic species sulfate, ammonium, and nitrate, only nitrate showed clear diel variations with highest concentrations at night. As to the size-segregated samples, the 2-methyltetrols were present in both the fine and coarse modes, while the C5-alkene triols and the alpha-/beta-pinene SOA tracers were only associated with the fine mode. The ionic species sulfate, ammonium, and nitrate made up for, on average, 24, 10, and 26% of the PM2.5 mass, while organic matter was responsible for 47% of that mass. Isoprene and alpha-pinene secondary organic carbon (SOC) accounted, on average, for, respectively, 6.8 and at least 4.8% of the PM2.5 organic carbon, but the contribution of isoprene SOC was more pronounced during daytime (9.6%), whereas that of alpha-pinene SOC was largest at night (at least 6.0%).
- Published
- 2009
- Full Text
- View/download PDF
4. Atmospheric iron deposition: global distribution, variability, and human perturbations.
- Author
-
Mahowald NM, Engelstaedter S, Luo C, Sealy A, Artaxo P, Benitez-Nelson C, Bonnet S, Chen Y, Chuang PY, Cohen DD, Dulac F, Herut B, Johansen AM, Kubilay N, Losno R, Maenhaut W, Paytan A, Prospero JM, Shank LM, and Siefert RL
- Subjects
- Aerosols chemistry, Animals, Dust analysis, Humans, Oceans and Seas, Time Factors, Atmosphere chemistry, Iron chemistry, Models, Chemical, Seawater chemistry
- Abstract
Atmospheric inputs of iron to the open ocean are hypothesized to modulate ocean biogeochemistry. This review presents an integration of available observations of atmospheric iron and iron deposition, and also covers bioavailable iron distributions. Methods for estimating temporal variability in ocean deposition over the recent past are reviewed. Desert dust iron is estimated to represent 95% of the global atmospheric iron cycle, and combustion sources of iron are responsible for the remaining 5%. Humans may be significantly perturbing desert dust (up to 50%). The sources of bioavailable iron are less well understood than those of iron, partly because we do not know what speciation of the iron is bioavailable. Bioavailable iron can derive from atmospheric processing of relatively insoluble desert dust iron or from direct emissions of soluble iron from combustion sources. These results imply that humans could be substantially impacting iron and bioavailable iron deposition to ocean regions, but there are large uncertainties in our understanding.
- Published
- 2009
- Full Text
- View/download PDF
5. Characterization of novel di- and tricarboxylic acids in fine tropical aerosols.
- Author
-
Zdráhal Z, Vermeylen R, Claeys M, Maenhaut W, Guyon P, and Artaxo P
- Subjects
- Aerosols chemistry, Gas Chromatography-Mass Spectrometry, Rain, Seasons, Spectrometry, Mass, Electrospray Ionization methods, Air Pollutants analysis, Atmosphere analysis, Dicarboxylic Acids analysis, Tricarboxylic Acids analysis, Tropical Climate
- Abstract
Three unknown di- and tricarboxylic acids were characterized in the fine size fraction of aerosols which were collected during the wet season in the Amazon basin (Rondonia, Brazil). For the structural characterization of the methyl esters of these unknown compounds, mass spectrometry with electron ionization (EI) and tandem mass spectral techniques combined with gas chromatographic (GC) separation were employed. Fragment and parent ion spectra were recorded during elution of the GC peaks by linked scanning of the B and E sectors in combination with high-energy collision-induced dissociation. The fragmentation patterns of significant ions in the first-order EI spectra were also obtained for nonanedioic acid, which was examined as a model compound. The compounds were tentatively identified as 4-acetyloxyheptanedioic acid and cis and trans isomers of 5-hexene-1,1,6-tricarboxylic acid. Since there were indications of biomass burning during the aerosol sampling the di- and tricarboxylic acids characterized in the present work could be markers for biomass burning. Furthermore, the characterization of di- and tricarboxylic acids in the fine size fraction of atmospheric aerosols may be important for assessing the effects of organic aerosols in cloud formation., (Copyright 2001 John Wiley & Sons, Ltd.)
- Published
- 2001
- Full Text
- View/download PDF
6. Clues for a standardised thermal-optical protocol for the assessment of organic and elemental carbon within ambient air particulate matter.
- Author
-
Chiappini, L., Verlhac, S., Aujay, R., Maenhaut, W., Putaud, J. P., Sciare, J., Jaffrezo, J. L., Liousse, C., Galy-Lacaux, C., Alleman, L. Y., Panteliadis, P., Leoz, E., and Favez, O.
- Subjects
CARBON ,ATMOSPHERIC chemistry ,CLIMATOLOGY ,METEOROLOGY ,ATMOSPHERE ,PARTICULATE matter ,PARTICLES - Abstract
Along with some research networking programmes, the European Directive 2008/50/CE requires chemical speciation of fine aerosol (PM2.5), including elemental (EC) and organic carbon (OC), at a few rural sites in European countries. Meanwhile, the thermal-optical technique is considered by the European and US networking agencies and normalisation bodies as a reference method to quantify EC-OC collected on filters. Although commonly used for many years, this technique still suffers from a lack of information on the comparability of the different analytical protocols (temperature protocols, type of optical correction) currently applied in the laboratories. To better evaluate the EC-OC data set quality and related uncertainties, the French National Reference Laboratory for Ambient Air Quality Monitoring (LCSQA) organised an EC-OC comparison exercise for French laboratories using different thermaloptical methods (five laboratories only). While there is good agreement on total carbon (TC) measurements among all participants, some differences can be observed on the EC / TC ratio, even among laboratories using the same thermal protocol. These results led to further tests on the influence of the optical correction: results obtained from different European laboratories confirmed that there were higher differences between OCTOT and OCTOR measured with NIOSH 5040 in comparison to EUSAAR-2. Also, striking differences between EC
TOT / ECTOR ratios can be observed when comparing results obtained for rural and urban samples, with ECTOT being 50% lower than ECTOR at rural sites whereas it is only 20% lower at urban sites. The PM chemical composition could explain these differences but the way it influences the EC-OC measurement is not clear and needs further investigation. Meanwhile, some additional tests seem to indicate an influence of oven soiling on the EC-OC measurement data quality. This highlights the necessity to follow the laser signal decrease with time and its impact on measurements. Nevertheless, this should be confirmed by further experiments, involving more samples and various instruments, to enable statistical processing. All these results provide insights to determine the quality of EC-OC analytical methods and may contribute to the work toward establishing method standardisation. [ABSTRACT FROM AUTHOR]- Published
- 2014
- Full Text
- View/download PDF
7. Observation of 2-methyltetrols and related photo-oxidation products of isoprene in boreal forest aerosols from Hyytiãlã, Finland.
- Author
-
Kourtchev, I., Ruuskanen, T., Maenhaut, W., Kulmala, M., and Claeys, M.
- Subjects
OXIDATION ,ISOPRENE ,BUTENE ,TAIGAS ,ATMOSPHERE ,AIR pollution ,AEROSOLS - Abstract
Oxidation products of isoprene including 2-methyltetrols (2-methylthreitol and 2-methylerythritol), 2-methylglyceric acid and triol derivatives of isoprene (2-methyl-1,3,4-trihydroxy-1-butene (cis and trans) and 3-methyl-2,3,4-trihydroxy-1-butene) have been detected in boreal forest PM
1 aerosols collected at Hyytiälä, southern Finland, during a 2004 summer period, at significant atmospheric concentrations (in total 51 ng m-3 in summer versus 0.46 ng m-3 in fall). On the basis of these results, it can be concluded that photo-oxidation of isoprene is an important atmospheric chemistry process that contributes to secondary organic aerosol formation during summer in this conifer forest ecosystem. In addition to isoprene oxidation products, malic acid, which can be regarded as an intermediate in the oxidation of unsaturated fatty acids, was also detected at high concentrations during the summer period (46 ng m-3 in summer versus 5.2 ng m-3 in fall), while levoglucosan, originating from biomass burning, became relatively more important during the fall period (29 ng m-3 in fall versus 10 ng m-3 in summer). Pinic acid, a major photo-oxidation product of α-pinene in laboratory experiments, could only be detected at trace levels in the summer samples, suggesting that further oxidation of pinic acid occurs and/or that different oxidation pathways are followed. We hypothesize that photo-oxidation of isoprene may participate in the early stages of new particle formation, a phenomenon which has been well documented in the boreal forest environment. [ABSTRACT FROM AUTHOR]- Published
- 2005
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.