1. Accurate and Model Independent Radius Determination of Single FGK and M Dwarfs Using Gaia DR3 Data
- Author
-
Kiman, Rocio, Brandt, Timothy D., Faherty, Jacqueline K., and Popinchalk, Mark
- Subjects
Astrophysics - Solar and Stellar Astrophysics ,Astrophysics - Earth and Planetary Astrophysics ,Astrophysics - Astrophysics of Galaxies ,Astrophysics - Instrumentation and Methods for Astrophysics - Abstract
Measuring fundamental stellar parameters is key to fully comprehending the evolution of stars. However, current theoretical models over-predict effective temperatures, and under-predict radii, compared to observations of K and M dwarfs (radius inflation problem). In this work, we developed a model independent method to infer precise radii of single FGK and M dwarfs using Gaia DR3 parallaxes and photometry, and we used it to study the radius inflation problem. We calibrated nine surface brightness-color relations for the three Gaia magnitudes and colors using a sample of stars with angular diameter measurements. We achieved an accuracy of 4% in our angular diameter estimations, which Gaia's parallaxes allow us to convert to a physical radii. We validated our method by comparing our radius measurements with literature samples and the Gaia DR3 catalog, which confirmed the accuracy of our method and revealed systematic offsets in the Gaia measurements. Moreover, we used a sample with measured Halpha equivalent width (HaEW), a magnetic activity indicator, to study the radius inflation problem. We demonstrated that active stars have larger radii than inactive stars, showing that radius inflation is correlated with magnetic activity. We found a correlation between the radius inflation of active stars and HaEW for the mass bin 0.5
- Published
- 2024