Jennifer L. van Saders, Léo Girardi, Johanna Teske, Emma Willett, Dennis Stello, Tiago L. Campante, M. Vrard, William J. Chaplin, Marc H. Pinsonneault, Savita Mathur, Andreas Christ Sølvsten Jørgensen, Paul G. Beck, Andrea Miglio, Martin Bo Nielsen, B. Mosser, Aldo Serenelli, Thaíse S. Rodrigues, Rafael A. García, Maria Bergemann, Josefina Montalbán, Jamie Tayar, Oliver J. Hall, Sarbani Basu, Luca Casagrande, Domenico Nardiello, Yvonne Elsworth, Rachael L. Beaton, Saniya Khan, Warrick H. Ball, Christina Chiappini, Victor Silva Aguirre, J. Ted Mackereth, Diego Bossini, Government of Canada, University of Toronto, Ministerio de Ciencia, Innovación y Universidades (España), European Commission, Australian Research Council, Generalitat de Catalunya, National Aeronautics and Space Administration (US), Laboratoire d'Astrophysique de Marseille (LAM), Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), Mackereth, Ted, Miglio, Andrea, Elsworth, Yvonne, Mosser, Benoit, Mathur, Savita, Garcia, Rafael A, Nardiello, Domenico, Hall, Oliver J, Vrard, Mathieu, Ball, Warrick H, Basu, Sarbani, Beaton, Rachael L, Beck, Paul G, Bergemann, Maria, Bossini, Diego, Casagrande, Luca, Campante, Tiago L, Chaplin, William J, Chiappini, Cristina, Girardi, Léo, Jørgensen, Andreas Christ Sølvsten, Khan, Saniya, Montalbán, Josefina, Nielsen, Martin B, Pinsonneault, Marc H, Rodrigues, Thaíse S, Serenelli, Aldo, Silva Aguirre, Victor, Stello, Denni, Tayar, Jamie, Teske, Johanna, van Saders, Jennifer L, and Willett, Emma
Mackereth, J. Ted, et al., The NASA Transiting Exoplanet Survey Satellite (NASA-TESS) mission presents a treasure trove for understanding the stars it observes and the Milky Way, in which they reside. We present a first look at the prospects for Galactic and stellar astrophysics by performing initial asteroseismic analyses of bright (G < 11) red giant stars in the TESS southern continuous viewing zone (SCVZ). Using three independent pipelines, we detect νmax and Δν in 41 per cent of the 15 405 star parent sample (6388 stars), with consistency at a level of ∼2 per cent in νmax and ∼5 per cent in Δν. Based on this, we predict that seismology will be attainable for ∼3 × 105 giants across the whole sky and at least 104 giants with ≥1 yr of observations in the TESS-CVZs, subject to improvements in analysis and data reduction techniques. The best quality TESS-CVZ data, for 5574 stars where pipelines returned consistent results, provide high-quality power spectra across a number of stellar evolutionary states. This makes possible studies of, for example, the asymptotic giant branch bump. Furthermore, we demonstrate that mixed ℓ = 1 modes and rotational splitting are cleanly observed in the 1-yr data set. By combining TESS-CVZ data with TESS-HERMES, SkyMapper, APOGEE, and Gaia, we demonstrate its strong potential for Galactic archaeology studies, providing good age precision and accuracy that reproduces well the age of high [α/Fe] stars and relationships between mass and kinematics from previous studies based on e.g. Kepler. Better quality astrometry and simpler target selection than the Kepler sample makes this data ideal for studies of the local star formation history and evolution of the Galactic disc. These results provide a strong case for detailed spectroscopic follow-up in the CVZs to complement that which has been (or will be) collected by current surveys., JTM and AM acknowledge support from the ERC Consolidator Grant funding scheme (project ASTEROCHRONOMETRY, G.A. n. 772293). JTM acknowledges support from the Banting Postdoctoral Fellowship programme administered by the Government of Canada, and a CITA/Dunlap Institute fellowship. The Dunlap Institute is funded through an endowment established by the David Dunlap family and the University of Toronto. SM acknowledges support from the Spanish Ministry with the Ramon y Cajal fellowship number RYC-2015-17697. RAG acknowledges the support from the PLATO CNES grant. DB acknowledges supported by FCT through the research grants UIDB/04434/2020, UIDP/04434/2020, and PTDC/FIS-AST/30389/2017, and by FEDER – Fundo Europeu de Desenvolvimento Regional through COMPETE2020 – Programa Operacional Competitividade e Internacionalização (grant: POCI-01-0145-FEDER-030389). LC acknowledges support from the Australian Research Council grant FT160100402. TC acknowledges support from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement no. 792848 (PULSATION). AS is partially supported by grants ESP2017-82674-R (Spanish Government) and 2017-SGR-1131 (Generalitat de Catalunya). MHP and MV acknowledge support from NASA grant 80NSSC18K1582.