1. On the minimum radius of very massive neutron stars
- Author
-
Sophia Han and Madappa Prakash
- Subjects
010504 meteorology & atmospheric sciences ,Nuclear Theory ,Astrophysics::High Energy Astrophysical Phenomena ,FOS: Physical sciences ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,01 natural sciences ,Upper and lower bounds ,Nuclear Theory (nucl-th) ,Pulsar ,0103 physical sciences ,010303 astronomy & astrophysics ,Solar and Stellar Astrophysics (astro-ph.SR) ,Astrophysics::Galaxy Astrophysics ,0105 earth and related environmental sciences ,Physics ,High Energy Astrophysical Phenomena (astro-ph.HE) ,Equation of state (cosmology) ,Gravitational wave ,Astronomy and Astrophysics ,Radius ,Neutron star ,Stars ,Strange matter ,Astrophysics - Solar and Stellar Astrophysics ,Space and Planetary Science ,Astrophysics::Earth and Planetary Astrophysics ,Astrophysics - High Energy Astrophysical Phenomena - Abstract
Prospects of establishing the radii of massive neutron stars in PSR J1614-2230 and PSR J0740+6620 from NICER and Chandra observatories hold the potential to constrain the equation of state (EoS) of matter to densities well beyond those encountered in canonical stars of mass $\sim 1.4\,{\rm M}_{\odot}$. In this work, we investigate the relation between the radii of very massive neutron stars up to the maximum mass, $M_{\rm max}$, supported by dense matter EoSs. Results from models with hadronic matter are contrasted with those that include a first-order hadron-to-quark phase transition. We find that a lower bound on $M_{\rm max}$ with an upper bound on the radius of massive pulsars serves to rule out too soft quark matter, and an upper bound on $M_{\rm max}$ with a lower bound on the radius of massive pulsars strongly disfavors a transition into too-stiff quark matter appearing at low densities. The complementary role played by radius inferences from future gravitational wave events of inspiraling binary neutron stars is also briefly discussed., 15 pages, 10 figures, 3 tables; discussions and references added
- Published
- 2020