26 results on '"JENNISKENS, Peter"'
Search Results
2. Forecast for the Remainder of the Leonid Storm Season
- Author
-
Jenniskens, Peter and DeVincenzi, Donald L
- Subjects
Astrophysics - Abstract
The dust trails of comet 55P/Tempel-Tuttle lead to Leonid storms on Earth, threatening satellites in orbit. We present a new model that accounts in detail for the observed properties of dust tails evolved by the comet at previous oppositions. The prediction model shows the 1767-dust trail closer to Earth's orbit in 2001 than originally thought; increasing expected peak rates for North America observers. Predictions for the 2002 storms are less affected. We demonstrate that the observed shower profiles can be understood as a projection of the comet lightcurve.
- Published
- 2001
3. Dust Trails of SP/Tuttle and the Unusual Outbursts of the Ursid Shower
- Author
-
Jenniskens, Peter, Lyytinen, E, deLignie, M. C, Johannink, C, Jobse, K, Schievink, R, Langbroek, M, Koop, M, Gural, P, Wilson, M, and DeVincenzi, Donald L
- Subjects
Astrophysics - Abstract
Halley-type comets tend to have a series of dust trails that remain spatially correlated for extended periods of time, each dating from a specific return of the comet. Encounters with 1 - 9 revolution old individual dust trails of 55P/Tempel-Tuttle have led to well recognized Leonid shower maxim, the peak time of which was well predicted by recent models. Now. we used the same model to calculate the position of dust trails of comet Shuttle, a Halley-type comet in an (approximately) 13.6 year orbit passing just outside of Earth's orbit. We discovered that the meteoroids tend to be trapped in the 14:12 mean motion resonance with Jupiter, while the comet librates in a slightly shorter period orbit around the 13:15 resonance. It takes six centuries to change the orbit enough to intersect Earth's orbit. During that time, the meteoroids and comet separate in mean anomaly by six years. thus explaining the unusual aphelion occurrences of Ursid outbursts. The resonances also prevent dispersion, so that the dust trail encounters (specifically, from dust trails of AD 1378 - 1405) occur only in one year in each orbit. We predicted enhanced activity on December 22, 2000, at around 7:29 and 8:35 UT (universal time) from dust trails dating to the 1405 and 1392 return, respectively. This event was observed from California using video and photographic techniques. At the same time, five Global-MS-Net stations in Finland, Japan and Belgium counted meteors using forward meteor scatter. The outburst peaked at 8:06:07 UT, December 22, at Zenith Hourly Rate (approx.) 90 per hour. The Ursid rates were above half peak intensity during 4.2 hours. This is only the second Halley type comet for which a meteor outburst can be dated to a specific return of the parent comet, and traces their presence back form 9 to at least 45 revolutions of the comet. New orbital elements of Ursid meteoroids are presented. We find that most orbits do scatter around the anticipated positions, confirming the link with comet Shuttle and the epoch of ejection. The 1405 and.1392 dust trails appear to have contributed similar amounts to the activity profile. Some orbits provide a hint of much older debris being present as well. Some of the dispersion in the radiant position may reflect a true variation in inclinations, with two groupings at low and high values, which is not understood at present.
- Published
- 2001
4. Meteors as a Delivery Vehicle for Organic Matter to the Early Earth
- Author
-
Jenniskens, Peter and DeVincenzi, D
- Subjects
Astrophysics - Abstract
Only in recent years has a concerted effort been made to study the circumstances under which extraterrestrial organic matter is accreted on Earth by way of meteors. Meteors are the luminous phenomena associated with the (partial) ablation of meteoric matter and represent the dominant pathway from space to Earth, with the possible exception of rare giant impacts of asteroids and comets. Meteors dominated the supply of organics to the early Earth if organic matter survived this pathway efficiently. Moreover, meteors are a source of kinetic energy that can convert inert atmospheric gases such as CO, N, and H2O into useful compounds, such as HCN and NO. Understanding these processes relies heavily on empirical evidence that is still very limited. Here I report on the observations in hand and discuss their relevance in the context of the origin of life.
- Published
- 2001
5. Comparison of 1998 and 1999 Leonid Light Curve Morphology and Meteoroid Structure
- Author
-
Murray, Ian S, Beech, Martin, Taylor, Michael J, Jenniskens, Peter, Hawkes, Robert L, and DeVincenzi, Donald L
- Subjects
Astrophysics - Abstract
Photometric low-light level video observations of 1999 Leonid storm meteors have been obtained from airborne platforms during the Leonid multi-instrument aircraft campaign (Leonid MAC). The 1999 Leonid light curves tend to be skewed towards the end point of the trajectory, while the 1998 Leonid light curves were not. The variation in the light curves from 1998 and 1999 can be explained as an overall reduction in the mass distribution index, alpha from approximately 1.95 in 1998 to approximately 1.75 in 1999. We have interpreted this behavior as being either indicative of a gradual loss of the "glue" that keeps the grains together, or the fact that the meteoroids sampled in 1998 had a different morphological structure to those sampled in 1999. The early fragmentation of a dustball meteoroid results in a light curve that peaks sooner than that predicted by classical single body ablation theory.
- Published
- 2000
6. The 1999 Leonid Multi-Instrument Aircraft Campaign - An Early Review
- Author
-
Jenniskens, Peter, Butow, Steven J, Fonda, Mark, and DeVincenzi, Donald L
- Subjects
Astrophysics - Abstract
The Leonid meteor storm of 1999 was observed from two B707-type research aircraft by a team of 35 scientists of seven nationalities over the Mediterranean Sea on Nov. 18, 1999. The mission was sponsored by various science programs of NASA, and offered the best possible observing conditions, free of clouds and at a prime location for viewing the storm. The 1999 mission followed a similar effort in 1998, improving upon mission strategy and scope. As before, spectroscopic and imaging experiments targeted meteors and persistent trains, but also airglow, aurora, elves and sprites. The research aimed to address outstanding questions in Planetary Science, Astronomy, Astrobiology and upper atmospheric research, including Aeronornie. In addition, near real-time flux measurements contributed to a USAF sponsored program for space weather awareness. An overview of the first results is given, which are discussed in preparation for future missions.
- Published
- 2000
7. Recognizing Leonid Meteoroids Among The Collected Startospheric Dust
- Author
-
Rietmeijer, Frans J. M, Jenniskens, Peter, and DeVincenzi, Donald L
- Subjects
Astrophysics - Abstract
Three chemical groups of primary "silicate" spheres <30 micron in diameter of cometary origin were collected in the lower stratosphere between 1981 May and 1994 July. The "silicate" sphere abundances represent an annual background from contributions by sporadic meteor and weak annual meteor shower activities. During two collection periods, from 06/22 until 08/18, 1983 (U2015), and from 09/15-12/15, 1981 (W7027/7029), a higher number of spheres was collected compared to other periods of the year represented by the other collectors studied here. This study links two different data sets, viz. the NASA/JSC Cosmic Dust Catalogs and peak activities of annual meteor showers, and identified high-velocity cometary sources for collected stratospheric "silicate" spheres. The majority of spheres on flag U2015 may originate from comet P/Swift-Tuttle (Perseids), while the majority of spheres on flags W7027/7029 could be from comet P/Halley (Orionids) or comet P/Tempel-Tuttle (Leonids). Variations in relative proportions of the Mg,Si,Ca +/- Al, Mg,Si +/- Fe and Al,Si,Ca spheres may offer a hint of chemical differences among high-velocity comets. Proof for the findings reported here might be obtained by targeted cosmic dust collections in the lower stratosphere including periods of meteor shower and storm activity.
- Published
- 2000
8. Leonid Storm Flux Analysis From One Leonid MAC Video AL50R
- Author
-
Gural, Peter S, Jenniskens, Peter, and DeVincenzi, Donald L
- Subjects
Astrophysics - Abstract
A detailed meteor flux analysis is presented of a seventeen-minute portion of one videotape, collected on November 18, 1999, during the Leonid Multi-instrument Aircraft Campaign. The data was recorded around the peak of the Leonid meteor storm using an intensified CCD camera pointed towards the low southern horizon. Positions of meteors on the sky were measured. These measured meteor distributions were compared to a Monte Carlo simulation, which is a new approach to parameter estimation for mass ratio and flux. Comparison of simulated flux versus observed flux levels, seen between 1:50:00 and 2:06:41 UT, indicate a magnitude population index of r = 1.8 +/- 0.1 and mass ratio of s = 1.64 +/- 0.06. The average spatial density of the material contributing to the Leonid storm peak is measured at 0.82 +/- 0.19 particles per square kilometer per hour for particles of at least absolute visual magnitude +6.5. Clustering analysis of the arrival times of Leonids impacting the earth's atmosphere over the total observing interval shows no enhancement or clumping down to time scales of the video frame rate. This indicates a uniformly random temporal distribution of particles in the stream encountered during the 1999 epoch. Based on the observed distribution of meteors on the sky and the model distribution, recommendations am made for the optimal pointing directions for video camera meteor counts during future ground and airborne missions.
- Published
- 2000
9. Leonid Shower Probe of Aerothermochemistry in Meteoric Plasmas and Implication for the Origin of Life
- Author
-
Jenniskens, Peter S. I, Packan, D, Laux, C, Wilson, Mike, Boyd, I. D, Kruger, C. H, Popova, O, Fonda, M, and DeVincenzi, Donald L
- Subjects
Astrophysics - Abstract
The rarefied and high Mach number (up to 270) of the flow field of a typical meteoroid as it enters the Earth's atmosphere implies conditions of ablation and atmospheric chemistry that have proven to be as difficult to grasp as the proverbial shooting star. An airborne campaign was organized to study these processes during an intense Leonid shower. A probe of molecular band emission now demonstrates that the flash of light from a common meteor originates in the wake of the object rather than in the meteor head. A new theoretical approach using the direct simulation Monte Carlo technique demonstrates that the ablation process is critical in heating the air in that wake. Air molecules impinge on a dense cloud of ablated material in front of the meteoroid head into an extended wake that has the observed excitation temperatures. These processes determine what extraterrestrial materials may have been delivered to Earth at the time of the origin of life.
- Published
- 2000
10. Successful Hybrid Approach to Visual and Video Observations of the 1999 Leonid Storm
- Author
-
Jenniskens, Peter, Crawford, Chris, Butow, Steve, and DeVincenzi, Donald L
- Subjects
Astrophysics - Abstract
A new hybrid technique of visual and video meteor observations is described. The method proved particularly effective for airborne observations of meteor shower activity. Results from the 1999 Leonid Multi-Instrument Aircraft Campaign are presented, and the profile shape of the 1999 Leonid storm is discussed in relation to meteor shower models. We find that the storm is best described with a Lorentz profile. Application to past meteor outbursts shows that the cui,rent multi-trailet model of a dust trail is slightly shifted and we crossed deeper into the 1899 epoch trallet than expected.
- Published
- 2000
11. FeO 'Orange Arc' Emission Detected in Optical Spectrum of Leonid Persistent Trains
- Author
-
Jenniskens, Peter, Lacey, Matt, Allan, Beverly J, Self, Daniel E, Plane, John M. C, and DeVincenzi, Donald L
- Subjects
Astrophysics - Abstract
We report the detection of a broad continuum emission dominating the visual spectrum of a Leonid persistent train. A comparison with laboratory spectra of FeO 1 "orange arc" emission at I mbar shows a general agreement of the band position and shape. The detection of FeO confirms the classical mechanism of metal atom catalyzed recombination of ozone and oxygen atoms as the driving force behind optical emission from persistent trains. Sodium and iron atoms are now confirmed catalysts.
- Published
- 2000
12. Search for Organic Matter in Leonid Meteoroids
- Author
-
Rairden, Richard L, Jenniskens, Peter, Laux, Christophe O, and DeVincenzi, Donald L
- Subjects
Astrophysics - Abstract
Near-ultraviolet 300-410 nm spectra of Leonid meteors were obtained in an effort to measure the strong B to X emission band of the radical CN in Leonid meteor spectra at 387 nm. CN is an expected product of ablation of nitrogen containing organic carbon in the meteoroids as well as a possible product of the aerothermochemistry induced by the kinetic energy of the meteor. A slitless spectrograph with objective grating was deployed on FISTA during the 1999 Leonid Multi-Instrument Aircraft Campaign. Fifteen first-order UV spectra were captured near the 02:00 UT meteor storm peak on November 18. It is found that neutral iron lines dominate the spectrum, with no clear sign of the CN band. The meteor plasma contains less than one CN molecule per three Fe atoms at the observed altitude of about 100 km.
- Published
- 2000
13. Precise Trajectories and Orbits of Meteoroids from the 1999 Leonid Meteor Storm
- Author
-
Betlem, Hans, Jenniskens, Peter, Spurny, Pavel, VanLeeuwen, Guus Docters, Miskotte, Koen, TerKuile, Casper R, Zerubin, Peter, Angelos, Chris, and DeVincenzi, Donald L
- Subjects
Astrophysics - Abstract
Photographic multi-station observations of 47 Leonid meteors are presented that were obtained from two ground locations in Spain during the 1999 meteor storm. We find an unresolved compact cluster of radiants at alpha = 153.67 +/- 0.05 and delta = 21.70 +/- 0.05 for a mean solar longitude of 235.282 (J2000). The position is identical to that of the November 17/18 outburst of 1998, which implies that both are due to comet 55P/Tempel-Tuttle's ejecta from 1899. We also find a halo which contains about 28% of all meteors. The spatial distribution of radiant positions appears to be Lorentzian, with a similar fraction of meteors in the profile wings as the meteor storm activity curve.
- Published
- 2000
14. Characteristics of Fe Ablation Trials Observed During the 1998 Leonid Meteor Shower
- Author
-
Chu, Xin-Zhao, Pan, Wei-Lin, Papen, George, Swenson, Gary, Gardner, Chester S, Jenniskens, Peter, and DeVincenzi, Donald L
- Subjects
Astrophysics - Abstract
Eighteen Fe ablation trails were observed during the 17/18 Nov 1998 Leonid meteor shower with an airborne Fe lidar aboard the National Simulation Facility/National Center for Atmospheric Research (NSF/NCAR) Electra aircraft over Okinawa. The average altitude of the 18 trails from the high velocity (72 km/s) Leonid meteors, 95.67 +/- 0.93 km, is approximately 6.7 km higher than previously observed for slower (approx. 30 km/s) sporadic meteors. This height difference is consistent with the assumption that meteors ablate when the kinetic energy imparted to the atmosphere reaches a critical threshold. The average age of the Fe trails, determined by a diffusion model, is 10.1 min. The youngest ages were observed below 92 km and above 98 km where chemistry and diffusion dominate, respectively. The average abundance of the trails is ten percent of the abundance of the background Fe layer. Observations suggest that the 1998 Leonid shower did not have a significant impact on the abundance of the background Fe layer.
- Published
- 2000
15. The Dynamical Evolution of A Tubular Leonid Persistent Train
- Author
-
Jenniskens, Peter, Nugent, David, Plane, John M. C, and DeVincenzi, Donald L
- Subjects
Astrophysics - Abstract
The dynamical evolution of the persistent train of a bright Leonid meteor was examined for evidence of the source of the luminosity and the physical conditions in the meteor path. The train consisted of two parallel somewhat diffuse luminous tracks, interpreted as the walls of a tube. A general lack of wind shear along the trail allowed these structures to remain intact for nearly 200 s, from which it was possible to determine that the tubular structure expanded at a near constant 10.5 m/s, independent of altitude between 86 and 97 km. An initial fast decrease of train intensity below 90 km was followed by an increase in intensity and then a gradual decrease at longer times, whereas at high attitudes the integrated intensity was nearly constant with time. These results are compared to a model that describes the dynamical evolution of the train by diffusion, following an initial rapid expansion of the hot gaseous trail behind the meteoroid. The train luminosity is produced by O ((sup 1)S) emission at 557 nm, driven by elevated atomic O levels produced by the meteor impact, as well as chemiluminescent reactions of the ablated metals Na and Fe with O3. Ozone is rapidly removed within the train, both by thermal decomposition and catalytic destruction by the metallic species. Hence, the brightest emission occurs at the edge of the train between outwardly diffusing metallic species and inwardly diffusing O3. Although the model is able to account plausibly for a number of characteristic features of the train evolution, significant discrepancies remain that cannot easily be resolved.
- Published
- 2000
16. Buoyancy of the 'Y2K' Persistent Train and the Trajectory of the 04:00:29 UT Leonid Fireball
- Author
-
Jenniskens, Peter, Rairden, Rick L, and DeVincenzi, Donald L
- Subjects
Astrophysics - Abstract
The atmospheric trajectory is calculated of a particularly well studied fireball and train during the 1999 Leonid Multi-Instrument Aircraft Campaign. Less than a minute after the meteor's first appearance, the train curves into a '2'-shape, which persisted until at least 13 minutes after the fireball. We conclude that the shape results because of horizontal winds from gravity waves with a scale height of 8.3 km at 79-91 km altitude, as well as a westerly wind gradient with altitude. In addition, there is downward drift that affects the formation of loops in the train early on.
- Published
- 2000
17. Meteors: A Delivery Mechanism of Organic Matter to The Early Earth
- Author
-
Jenniskens, Peter, Wilson, Mike A, Packan, Dennis, Laux, Christophe O, Krueger, Charles H, Boyd, Iain, D, Popova, Olga P, Fonda, Mark, and DeVincenzi, Donald L
- Subjects
Astrophysics - Abstract
All potential exogenous pre-biotic matter arrived to Earth by ways of our atmosphere, where much material was ablated during a luminous phase called 1. meteors" in rarefied flows of high (up to 270) Mach number. The recent Leonid showers offered a first glimpse into the elusive physical conditions of the ablation process and atmospheric chemistry associated with high-speed meteors. Molecular emissions were detected that trace a meteor's brilliant light to a 4,300 K warm wake rather than to the meteor's head. A new theoretical approach using the direct simulation by Monte Carlo technique identified the source-region and demonstrated that the ablation process is critical in the heating of the meteor's wake. In the head of the meteor, organic carbon appears to survive flash heating and rapid cooling. The temperatures in the wake of the meteor are just right for dissociation of CO and the formation of more complex organic compounds. The resulting materials could account for the bulk of pre-biotic organic carbon on the early Earth at the time of the origin of life.
- Published
- 2000
18. 1997 Leonid Shower From Space
- Author
-
Jenniskens, Peter, Nugent, David, Murthy, Jayant, Tedesco, Ed, and DeVincenzi, Donal L
- Subjects
Astrophysics - Abstract
In November 1997, the Midcourse Space Experiment satellite (MSX) was deployed to observe the Leonid shower from space. The shower lived up to expectations, with abundant bright fireballs. Twenty-nine meteors were detected by a wide-angle, visible wavelength, camera near the limb of the Earth in a 48-minute interval, and three meteors by the narrow field camera. This amounts to a meteoroid influx of 5.5 +/- 0.6 10(exp -5)/sq km hr for masses greater than 0.3 gram. The limiting magnitude for limb observations of Leonid meteors was measured at M(sub v) = -1.5 magn The Leonid shower magnitude population index was 1.6 +/- 0.2 down to M(sub v) = -7 magn., with no sign of an upper mass cut-off.
- Published
- 2000
19. Mid-Infrared Spectroscopy of Persistent Leonid Trains
- Author
-
Russell, Ray W, Rossano, George S, Chatelain, Mark A, Lynch, David K, Tessensohn, Ted K, Abendroth, Eric, Kim, Daryl, Jenniskens, Peter, and DeVincenzi, Donald L
- Subjects
Astrophysics - Abstract
The first infrared spectroscopy in the 3-13 micron region has been obtained of several persistent Leonid meteor trains with two different instrument types, one at a desert ground-based site and the other on-board a high-flying aircraft. The spectra exhibit common structures assigned to enhanced emissions of warm CH4, CO2, CO and H2O which may originate from heated trace air compounds or materials created in the wake of the meteor. This is the first time that any of these molecules has been observed in the spectra of persistent trains. Hence, the mid-IR observations offer a new perspective on the physical processes that occur in the path of the meteor at some time after the meteor itself has passed by. Continuum emission is observed also, but its origin has not yet been established. No 10 micron dust emission feature has been observed.
- Published
- 2000
20. The 1998 Leonid Multi-Instrument Aircraft Campaign-An Early Review
- Author
-
Jenniskens, Peter, Butow, Steven J, and DeVincenzi, Donald L
- Subjects
Astrophysics - Abstract
The 1998 return of the Leonid shower was the target of the Leonid multi-instrument aircraft campaign (Leonid MAC), an unusual two-aircraft astronomical research mission executed near Okinawa, Japan. The prospect of a meteor storm brought 28 researchers of 7 nationalities together in a concerted effort to observe the shower by imaging, spectroscopic, and ranging techniques. This paper is a review of the major science issues that are behind the deployment of each of the present array of instruments and describes the interconnection of the various experiments. This was NASA's first astrobiology mission. The mission also aimed to study contemporary issues in planetary astronomy, in atmospheric sciences, and concerning the satellite impact hazard. First results of the participating observers are discussed and put in context, in preparation for the deployment of a planned second mission in November of 1999.
- Published
- 1999
21. Activity of the 1998 Leonid Shower From the Video Records
- Author
-
Jenniskens, Peter
- Subjects
Astrophysics - Abstract
Video observations of the Leonid shower aboard two aircraft in the 1998 Leonid multi-instrument aircraft campaign and from ground locations in China are presented. Observing at altitude proved particularly effective, with four times higher rates due to low extinction and low angular velocity at the horizon. The rates, derived from a total of 2500 Leonid meteors, trace at least two distinct dust components. One dominated the night of 1998 November 16/17. This two-day wide component was rich in bright meteors with r = N (m + 1)/N (m) approximately equal 1.5 (s = 1.4) and peaked at an influx of 3.1 +/- 0.4 x 10(exp -12) /sq m.s (for particles of mass < 7 x 10(exp -5) g) at solar longitude lambda(sub 0) approximately equal 234.52 (Eq. J2000). The other more narrow component peaked on 1998 November 17/18 at lambda(sub 0) = 235.31 +/- 0.01. Rates were elevated above the broad component between lambda(sub 0) = 235.15 and 235.40, symmetric around the current node of the parent comet 55P/Tempel-Tuttle, peaking at 5.1 +/- 0.2 x 10(exp -12) /sq m.s. The population index was higher, r = 1.8 +/- 0.1 (s = 1.7), but not as high as in past Leonid storms (r = 3.0). The flux profile of this component has an unusual asymmetric shape, which implies a blend of contributions from at least two different but relatively recent epochs of ejection. The variation of r across the profile might be due to mass-dependent ejection velocities of the narrowest component. High rates of faint meteors occurred only in an isolated five-minute interval at lambda(sub 0) = 235.198, which is likely the result of a single meteoroid breakup in space.
- Published
- 1999
22. Very Precise Orbits of 1998 Leonid Meteors
- Author
-
Betlem, Hans, Jenniskens, Peter, vantLeven, Jaap, terKuile, Casper, Johannink, Carl, Zhao, Hai-Bin, Lei, Chen-Ming, Li, Guan-You, Zhu, Jin, Evans, Steve, and DeVincenzi, Donald L
- Subjects
Astrophysics - Abstract
Seventy-five orbits of Leonid meteors obtained during the 1998 outburst are presented. Thirty-eight are precise enough to recognize significant dispersion in orbital elements. Results from the nights of 1998 November 16/17 and 17/18 differ, in agreement with the dominant presence of different dust components. The shower rate profile of 1998 November 16/17 was dominated by a broad component, rich in bright meteors. The radiant distribution is compact. The semimajor axis is confined to values close to that of the parent comet, whereas the distribution of inclination has a central condensation in a narrow range. On the other hand, 1998 November 17/18 was dominated by dust responsible for a more narrow secondary peak in the flux curve. The declination of the radiant and the inclination of the orbit are more widely dispersed. The argument of perihelion, inclination, and the perihelion distance are displaced. These data substantiate the hypothesis that trapping in orbital resonances is important for the dynamical evolution of the broad component.
- Published
- 1999
23. Structure of Water Ice in the Solar System
- Author
-
Blake, David, Jenniskens, Peter, and Chang, Sherwood
- Subjects
Astrophysics - Abstract
Nearly all of the properties of solar system ices (chemical reaction rates, volatile retention and release, vaporization behavior, thermal conductivity, infrared spectral characteristics and the like) are a direct consequence of ice structure. However, the characterization of astrophysical ices and their laboratory analogs has typically utilized indirect measurements which yield phenomenological interpretations. When water ice is vapor-deposited at 14 K and warmed until it volatilizes in moderate vacuum, the ice undergoes a series of amorphous to amorphous and amorphous to crystalline structural transitions which we have characterized by diffraction methods. These structural transitions correlate with and underlie many phenomena observed in laboratory infrared and gas release experiments. The elucidation of the dynamic structural changes which occur in vapor-deposited water ice as a function of time, temperature and radiation history allows for the more complete interpretation of remote observations of astrophysical ices and their laboratory analogs.
- Published
- 1996
24. Physical and chemical evolution of reduced organic matter in the ISM
- Author
-
Jenniskens, Peter and Blake, David F
- Subjects
Astrophysics - Abstract
Icy mantles on interstellar grains have been a topic of study in airborne astronomy. Recent laboratory analog studies of the yield of organic residue from UV photolyzed ices have shown that this mechanism can be the most significant source of complex reduced organic matter in the interstellar medium. However, the total yield is a function of the occurrence of heating events that evaporate the ice, i.e. T is greater than 130 K, and the mechanism for such events is debated. Recently, we proposed that the recombination of radicals in the ice does not need high temperature excursions and, instead, occurs during a structural transformation of water ice at temperatures in the range 38 - 68 K.
- Published
- 1995
25. The Metastable Persistence of Vapor-Deposited Amorphous Ice at Anomalously High Temperatures
- Author
-
Blake, David F, Jenniskens, Peter, and DeVincenzi, Donald L
- Subjects
Astrophysics - Abstract
Studies of the gas release, vaporization behavior and infrared (IR) spectral properties of amorphous and crystalline water ice have direct application to cometary and planetary outgassing phenomena and contribute to an understanding of the physical properties of astrophysical ices. Several investigators report anomalous phenomena related to the warming of vapor-deposited astrophysical ice analogs. However gas release, ice volatilization and IR spectral features are secondary or tertiary manifestations of ice structure or morphology. These observations are useful in mimicking the bulk physical and chemical phenomena taking place in cometary and other extraterrestrial ices but do not directly reveal the structural changes which are their root cause. The phenomenological interpretation of spectral and gas release data is probably the cause of somewhat contradictory explanations invoked to account for differences in water ice behavior in similar temperature regimes. It is the microstructure, micromorphology and microchemical heterogeneity of astrophysical ices which must be characterized if the mechanisms underlying the observed phenomena are to be understood. We have been using a modified Transmission Electron Microscope to characterize the structure of vapor-deposited astrophysical ice analogs as a function of their deposition, temperature history and composition. For the present experiments, pure water vapor is deposited at high vacuum onto a 15 K amorphous carbon film inside an Hitachi H-500H TEM. The resulting ice film (approx. 0.05 micrometers thick) is warmed at the rate of 1 K per minute and diffraction patterns are collected at 1 K intervals. These patterns are converted into radial intensity distributions which are calibrated using patterns of crystalline gold deposited on a small part of the carbon substrate. The small intensity contributed by the amorphous substrate is removed by background subtraction. The proportions of amorphous and crystalline material in each pattern are determined by subtracting a percentage of crystalline component relative to amorphous and pure crystalline endmembers. Vapor-deposited water ice undergoes two amorphous to amorphous structural transformations in the temperature range 15-130 K with important astrophysical implications. The onset of cubic crystallization occurs at 142-160 K (at 1K per minute heating rates) during which the 220 and 311 diffraction maxima appear and 0.1 micrometer crystallites can be seen in bright field images. This transition is time dependent.
- Published
- 1995
26. Dust trail evolution applied to long-period comet C/1854 L1 (Klinkerfues) and the ε-Eridanids
- Author
-
Vaubaillon, Jeremie and Jenniskens, Peter
- Subjects
- *
MECHANICS (Physics) , *CELESTIAL mechanics , *ASTROPHYSICS , *NATURAL disasters - Abstract
Abstract: In recent years, meteor outbursts and storms have greatly increased the likelihood of detection for meteor spectrographs with a small field of view. The successful prediction of the Leonid storms has made the deployment of new spectrographic techniques possible. Here, we apply a prediction model developed for the Leonid storms to the evolution of dust ejected from comet C/1854 L1 (Klinkerfues) in an effort to determine whether the 1981 outburst of ε-Eridanids may have been caused by this comet, and if so to predict future returns. We also investigated the possible link to comet C/962 B2. We find that the 1981 outburst may be explained as a Filament component (10–100 year old dust trails) from comet C/1854 L1, if that comet has an orbital period P ∼127 years. [Copyright &y& Elsevier]
- Published
- 2007
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.