5 results on '"Iro, N"'
Search Results
2. A Time-Dependent Radiative Model of HD209458b
- Author
-
Iro, N., Bezard, B., and Guillot, T.
- Subjects
Astrophysics - Abstract
We present a time-dependent radiative model of the atmosphere of HD209458b and investigate its thermal structure and chemical composition. In a first step, the stellar heating profile and radiative timescales were calculated under planet-averaged insolation conditions. We find that 99.99% of the incoming stellar flux has been absorbed before reaching the 7 bar level. Stellar photons cannot therefore penetrate deeply enough to explain the large radius of the planet. We derive a radiative time constant which increases with depth and reaches about 8 hr at 0.1 bar and 2.3 days at 1 bar. Time-dependent temperature profiles were also calculated, in the limit of a zonal wind that is independent on height (i.e. solid-body rotation) and constant absorption coefficients. We predict day-night variations of the effective temperature of \~600 K, for an equatorial rotation rate of 1 km/s, in good agreement with the predictions by Showman &Guillot (2002). This rotation rate yields day-to-night temperature variations in excess of 600 K above the 0.1-bar level. These variations rapidly decrease with depth below the 1-bar level and become negligible below the ~5--bar level for rotation rates of at least 0.5 km/s. At high altitudes (mbar pressures or less), the night temperatures are low enough to allow sodium to condense into Na2S. Synthetic transit spectra of the visible Na doublet show a much weaker sodium absorption on the morning limb than on the evening limb. The calculated dimming of the sodium feature during planetary transites agrees with the value reported by Charbonneau et al. (2002)., Comment: 9 pages, 8 figures, replaced with the revised version
- Published
- 2004
- Full Text
- View/download PDF
3. Search For Exospheric Signatures From Transiting Planets
- Author
-
Iro, N., Coustenis, A., Moutou, C., Lajous, N., Mayor, M., and Queloz, D.
- Subjects
Astrophysics - Abstract
We searched for spectral signatures from the exosphere of HD209458 in the UV and the near-IR with UVES and ISAAC at the VLT. We looked in particular for the helium absorption feature at 10 830 \AA predicted to be among the strongest ones. The upper limit of the He I line derived is 0.5% at 3 $\sigma$ for a 3 \AA bandwith. Planet-induced chromospheric activity search on HD209458 was also performed., Comment: 2 pages, LaTeX with 1 EPS figure embedded, using newpasp.sty (supplied). To appear in the proceedings of the XIXth IAP colloquium "Extrasolar Planets: Today and Tomorrow" held in Paris, France, 2003 June 30 -- July 4, ASP Conf. Ser
- Published
- 2003
4. A Time-Dependent Model of HD209458b
- Author
-
Iro, N., Bezard, B., and Guillot, T.
- Subjects
Astrophysics - Abstract
We developed a time-dependent radiative model for the atmosphere of HD209458b to investigate its thermal structure and chemical composition. Time-dependent temperature profiles were calculated, using a uniform zonal wind modelled as a solid body rotation. We predict day/night temperature variations of 600K around 0.1 bar, for a 1 km/s wind velocity, in good agreement with the predictions by Showman & Guillot (2002). On the night side, the low temperature allows the sodium to condense. Depletion of sodium in the morning limb may explain the lower than expected abundance found by Charbonneau et al (2002)., Comment: 2 pages, LaTeX with 1 EPS figure embedded, using newpasp.sty (supplied). To appear in the proceedings of the XIXth IAP colloquium "Extrasolar Planets: Today and Tomorrow" held in Paris, France, 2003 June 30 -- July 4, ASP Conf. Ser
- Published
- 2003
5. Habitability and Multistability in Earth-like Planets.
- Author
-
Lucarini, V., Pascale, S., Boschi, R., Kirk, E., and Iro, N.
- Subjects
HABITABLE planets ,THERMODYNAMICS ,HYDRODYNAMICS ,METEOROLOGY ,ASTROPHYSICS - Abstract
In this paper we explore the potential multistability of the climate for a planet around the habitable zone. We focus on conditions reminiscent to those of the Earth system, but our investigation has more general relevance and aims at presenting a general methodology for dealing with exoplanets. We describe a formalism able to provide a thorough analysis of the non-equilibrium thermodynamical properties of the climate system and explore, using a flexible climate model, how such properties depend on the energy input of the parent star, on the infrared atmospheric opacity, and on the rotation rate of the planet. We first show that it is possible to reproduce the multi-stability properties reminiscent of the paleoclimatologically relevant snowball (SB)-warm (W) conditions. We then characterise the thermodynamics of the simulated Wand SB states, clarifying the central role of the hydrological cycle in shaping the irreversibility and the efficiency of the W states, and emphasizing the extreme diversity of the SB states, where dry conditions are realized. Thermodynamics provides the clue for studying the tipping points of the system and leads us to constructing empirical parametrizations allowing for expressing the main thermodynamic properties as functions of the emission temperature of the planet only. Such empirical functions are shown to be rather robust with respect to changing the rotation rate of the planet from the current terrestrial one to half of it. Furthermore, we explore the dynamical range where the length of the day and the length of the year are comparable. We clearly find that there is a critical rotation rate below which the multi-stability properties are lost, and the ice-albedo feedback responsible for the presence of SB and W conditions is damped. The bifurcation graph of the system suggests the presence of a phase transition in the planetary system. Such critical rotation rate corresponds roughly to the phase-lock 2:1 condition. Therefore, if an Earth-like planet is 1:1 phase-locked with respect to the parent star, only one climatic state would be compatible with a given set of astronomical and astro-physical parameters. These results have relevance for the general theory of planetary circulation and for the definition of necessary and sufficient conditions for habitability. (© 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [ABSTRACT FROM AUTHOR]
- Published
- 2013
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.