1. A Measurement of the Rate of type-Ia Supernovae at Redshift $z\approx$ 0.1 from the First Season of the SDSS-II Supernova Survey
- Author
-
Dilday, Benjamin, Kessler, R., Frieman, J. A., Holtzman, J., Marriner, J., Miknaitis, G., Nichol, R. C., Romani, R., Sako, M., Bassett, B., Becker, A., Cinabro, D., DeJongh, F., Depoy, D. L., Doi, M., Garnavich, P. M., Hogan, C. J., Jha, S., Konishi, K., Lampeitl, H., Marshall, J. L., McGinnis, D., Prieto, J. L., Riess, A. G., Richmond, M. W., Schneider, D. P., Smith, M., Takanashi, N., Tokita, K., van der Heyden, K., Yasuda, N., Zheng, C., Barentine, J., Brewington, H., Choi, C., Crotts, A., Dembicky, J., Harvanek, M., Im, M., Ketzeback, W., Kleinman, S. J., Krzesiński, J., Long, D. C., Malanushenko, E., Malanushenko, V., McMillan, R. J., Nitta, A., Pan, K., Saurage, G., Snedden, S. A., Watters, S., Wheeler, J. C., and York, D.
- Subjects
Astrophysics - Abstract
We present a measurement of the rate of type Ia supernovae (SNe Ia) from the first of three seasons of data from the SDSS-II Supernova Survey. For this measurement, we include 17 SNe Ia at redshift $z\le0.12$. Assuming a flat cosmology with $\Omega_m = 0.3=1-\Omega_\Lambda$, we find a volumetric SN Ia rate of $[2.93^{+0.17}_{-0.04}({\rm systematic})^{+0.90}_{-0.71}({\rm statistical})] \times 10^{-5} {\rm SNe} {\rm Mpc}^{-3} h_{70}^3 {\rm year}^{-1}$, at a volume-weighted mean redshift of 0.09. This result is consistent with previous measurements of the SN Ia rate in a similar redshift range. The systematic errors are well controlled, resulting in the most precise measurement of the SN Ia rate in this redshift range. We use a maximum likelihood method to fit SN rate models to the SDSS-II Supernova Survey data in combination with other rate measurements, thereby constraining models for the redshift-evolution of the SN Ia rate. Fitting the combined data to a simple power-law evolution of the volumetric SN Ia rate, $r_V \propto (1+z)^{\beta}$, we obtain a value of $\beta = 1.5 \pm 0.6$, i.e. the SN Ia rate is determined to be an increasing function of redshift at the $\sim 2.5 \sigma$ level. Fitting the results to a model in which the volumetric SN rate, $r_V=A\rho(t)+B\dot \rho(t)$, where $\rho(t)$ is the stellar mass density and $\dot \rho(t)$ is the star formation rate, we find $A = (2.8 \pm 1.2) \times 10^{-14} \mathrm{SNe} \mathrm{M}_{\sun}^{-1} \mathrm{year}^{-1}$, $B = (9.3^{+3.4}_{-3.1})\times 10^{-4} \mathrm{SNe} \mathrm{M}_{\sun}^{-1}$., Comment: 65 pages, 12 figures
- Published
- 2008
- Full Text
- View/download PDF