1. First long-term optical spectro-photometric monitoring of a binary black hole candidate E1821+643: I. Variability of spectral lines and continuum
- Author
-
J. Torrealba, Jonathan León-Tavares, V. E. Zhdanova, Víctor M. Patiño-Álvarez, A. Kovacevic, A. N. Burenkov, V. H. Chavushyan, Wolfram Kollatschny, J. R. Valdes, Dragana Ilic, Alla I. Shapovalova, and Luka Č. Popović
- Subjects
Physics ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,Continuum (measurement) ,010308 nuclear & particles physics ,Astrophysics::High Energy Astrophysical Phenomena ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,01 natural sciences ,Astrophysics - Astrophysics of Galaxies ,Spectral line ,Binary black hole ,13. Climate action ,Space and Planetary Science ,Astrophysics of Galaxies (astro-ph.GA) ,0103 physical sciences ,010303 astronomy & astrophysics ,Astrophysics::Galaxy Astrophysics ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We report the results of the first long-term (1990-2014) optical spectro-photometric monitoring of a binary black hole candidate QSO E1821+643, a low-redshift high-luminosity radio-quiet quasar. In the monitored period the continua and H$\gamma$ fluxes changed for around two times, while the H$\beta$ flux changed around 1.4 times. We found the periodical variations in the photometric flux with the periods of 1200, 1850 and 4000 days, and 4500 days periodicity in the spectroscopic variations. However, the periodicity of 4000-4500 days covers only one cycle of variation and should be confirmed with a longer monitoring campaign. There is an indication of the period around 1300 days in the spectroscopic light curves, but with small significance level, while the 1850 days period could not be clearly identified in the spectroscopic light curves. The line profiles have not significantly changed, showing an important red asymmetry and broad line peak redshifted around +1000 km s$^{-1}$. However, H$\beta$ shows broader mean profile and has a larger time-lag ($\tau\sim120$ days) than H$\gamma$ ($\tau\sim60$ days). We estimate that the mass of the black hole is $\sim2.6\times10^9\rm M_\odot$. The obtained results are discussed in the frame of the binary black hole hypothesis. To explain the periodicity in the flux variability and high redshift of broad lines we discuss a scenario where dense gas-rich cloudy-like structures are orbiting around a recoiling black hole., Comment: Accepted in ApJS
- Published
- 2016