1. The close circumstellar environment of Betelgeuse - V. Rotation velocity and molecular envelope properties from ALMA
- Author
-
Keiichi Ohnaka, Pierre Kervella, E. O'Gorman, Leen Decin, Iain McDonald, Graham M. Harper, Anita M. S. Richards, Ward Homan, Miguel Montargès, Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA (UMR_8109)), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institute of Astronomy [Leuven], Catholic University of Leuven - Katholieke Universiteit Leuven (KU Leuven), Jodrell Bank Centre for Astrophysics (JBCA), University of Manchester [Manchester], Center for Astrophysics and Space Astronomy [Boulder] (CASA), University of Colorado [Boulder], Dublin Institute for Advanced Studies (DIAS), Instituto de Astronomıa, universidad catolica del Norte, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Jodrell Bank Centre for Astrophysics, Laboratoire d'études spatiales et d'instrumentation en astrophysique ( LESIA ), Université Pierre et Marie Curie - Paris 6 ( UPMC ) -Institut national des sciences de l'Univers ( INSU - CNRS ) -Observatoire de Paris-Université Paris Diderot - Paris 7 ( UPD7 ) -Centre National de la Recherche Scientifique ( CNRS ), Katholieke Universiteit Leuven ( KU Leuven ), Center for Astrophysics and Space Astronomy [Boulder] ( CASA ), University of Colorado Boulder [Boulder], and Dublin Institute for Advanced Studies ( DIAS )
- Subjects
Rotation period ,010504 meteorology & atmospheric sciences ,FOS: Physical sciences ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,01 natural sciences ,circumstellar matter [Stars] ,0103 physical sciences ,Astrophysics::Solar and Stellar Astrophysics ,Red supergiant ,Solar and Stellar Astrophysics ,010303 astronomy & astrophysics ,Chromosphere ,Astrophysics::Galaxy Astrophysics ,Solar and Stellar Astrophysics (astro-ph.SR) ,0105 earth and related environmental sciences ,Convection cell ,Physics ,Betelgeuse ,[SDU.ASTR.SR]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR] ,individual: Betelgeuse [Stars] ,Astronomy and Astrophysics ,Radius ,Position angle ,rotation [Stars] ,high angular resolution [Techniques] ,Astrophysics - Solar and Stellar Astrophysics ,13. Climate action ,Space and Planetary Science ,imaging [Stars] ,Astrophysics::Earth and Planetary Astrophysics ,Supergiant ,supergiants [Stars] ,[ SDU.ASTR.SR ] Sciences of the Universe [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR] - Abstract
We observed Betelgeuse using ALMA's extended configuration in band 7 (f~340 GHz, {\lambda}~0.88 mm), resulting in a very high angular resolution of 18 mas. Using a solid body rotation model of the 28SiO(v=2,J=8-7) line emission, we show that the supergiant is rotating with a projected equatorial velocity of v_eq sin i = 5.47 +/- 0.25 km/s at the equivalent continuum angular radius R_star = 29.50 +/- 0.14 mas. This corresponds to an angular rotation velocity of {\omega} sin i = (5.6 +/- 1.3) x 10^(-9) rad/s. The position angle of its north pole is PA = 48.0 +/- 3.5{\deg}. The rotation period of Betelgeuse is estimated to P/sin i = 36 +/- 8 years. The combination of our velocity measurement with previous observations in the ultraviolet shows that the chromosphere is co-rotating with the star up to a radius of ~10 au (45 mas or 1.5x the ALMA continuum radius). The coincidence of the position angle of the polar axis of Betelgeuse with that of the major ALMA continuum hot spot, a molecular plume, and a partial dust shell (from previous observations) suggests that focused mass loss is currently taking place in the polar region of the star. We propose that this hot spot corresponds to the location of a particularly strong "rogue" convection cell, which emits a focused molecular plume that subsequently condenses into dust at a few stellar radii. Rogue convection cells therefore appear to be an important factor shaping the anisotropic mass loss of red supergiants., Comment: 18 pages, 19 figures, accepted for publication in A&A, update of bibliography and acknowledgements
- Published
- 2017
- Full Text
- View/download PDF