1. The missing link in gravitational-wave astronomy
- Author
-
Sedda, Manuel Arca, Berry, Christopher P.L., Jani, Karan, Amaro-Seoane, Pau, Auclair, Pierre, Baird, Jonathon, Baker, Tessa, Berti, Emanuele, Breivik, Katelyn, Caprini, Chiara, Chen, Xian, Doneva, Daniela, Ezquiaga, Jose M., Saavik Ford, K. E., Katz, Michael L., Kolkowitz, Shimon, McKernan, Barry, Mueller, Guido, Nardini, Germano, Pikovsk, Igor, Rajendran, Surjeet, Sesana, Alberto, Shao, Lijing, Tamanini, Nicola, Warburton, Niels, Witek, Helvi, Wong, Kaze, and Zevin, Michael
- Subjects
Space-based detectors ,Multiband gravitational-wave astronomy ,Black holes ,Astrophysics::High Energy Astrophysical Phenomena ,Short Communication ,Astrophysics::Instrumentation and Methods for Astrophysics ,White dwarfs ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Intermediate-mass black holes ,Multimessenger astronomy ,Gravitational waves ,Neutron stars ,General Relativity and Quantum Cosmology ,Binary evolution ,Tests of general relativity ,Voyage 2050 ,Decihertz observatories ,Stochastic backgrounds - Abstract
Since 2015 the gravitational-wave observations of LIGO and Virgo have transformed our understanding of compact-object binaries. In the years to come, ground-based gravitational-wave observatories such as LIGO, Virgo, and their successors will increase in sensitivity, discovering thousands of stellar-mass binaries. In the 2030s, the space-based LISA will provide gravitational-wave observations of massive black holes binaries. Between the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sim 10$\end{document}∼10–103 Hz band of ground-based observatories and the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sim 10^{-4}$\end{document}∼10−4–10− 1 Hz band of LISA lies the uncharted decihertz gravitational-wave band. We propose a Decihertz Observatory to study this frequency range, and to complement observations made by other detectors. Decihertz observatories are well suited to observation of intermediate-mass (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sim 10^{2}$\end{document}∼102–104M⊙) black holes; they will be able to detect stellar-mass binaries days to years before they merge, providing early warning of nearby binary neutron star mergers and measurements of the eccentricity of binary black holes, and they will enable new tests of general relativity and the Standard Model of particle physics. Here we summarise how a Decihertz Observatory could provide unique insights into how black holes form and evolve across cosmic time, improve prospects for both multimessenger astronomy and multiband gravitational-wave astronomy, and enable new probes of gravity, particle physics and cosmology.
- Published
- 2021