58 results on '"Sample Analysis at Mars"'
Search Results
2. High‐Temperature HCl Evolutions From Mixtures of Perchlorates and Chlorides With Water‐Bearing Phases: Implications for the SAM Instrument in Gale Crater, Mars
- Author
-
J. V. Clark, Amy McAdam, P. D. Archer, Thomas J. Lapen, E. B. Rampe, B. Sutter, D. W. Ming, Rafael Navarro-González, and Paul Mahaffy
- Subjects
Bearing (mechanical) ,Evolved gas analysis ,Gale crater ,Mars Exploration Program ,law.invention ,Astrobiology ,chemistry.chemical_compound ,Geophysics ,chemistry ,Space and Planetary Science ,Geochemistry and Petrology ,law ,Sample Analysis at Mars ,Earth and Planetary Sciences (miscellaneous) ,Hydrogen chloride ,Geology - Published
- 2020
- Full Text
- View/download PDF
3. Chlorate/Fe‐Bearing Phase Mixtures as a Possible Source of Oxygen and Chlorine Detected by the Sample Analysis at Mars Instrument in Gale Crater, Mars
- Author
-
Paul Mahaffy, P. D. Archer, R. V. Morris, Rafael Navarro-González, E. B. Rampe, J. V. Hogancamp, B. Sutter, and D. W. Ming
- Subjects
Bearing (mechanical) ,Materials science ,010504 meteorology & atmospheric sciences ,Evolved gas analysis ,Chlorate ,chemistry.chemical_element ,Mars Exploration Program ,01 natural sciences ,Oxygen ,law.invention ,Astrobiology ,chemistry.chemical_compound ,Geophysics ,chemistry ,Space and Planetary Science ,Geochemistry and Petrology ,law ,Phase (matter) ,0103 physical sciences ,Sample Analysis at Mars ,Earth and Planetary Sciences (miscellaneous) ,Chlorine ,010303 astronomy & astrophysics ,0105 earth and related environmental sciences - Published
- 2018
- Full Text
- View/download PDF
4. Initial SAM calibration gas experiments on Mars: Quadrupole mass spectrometer results and implications
- Author
-
E. Raaen, Michael H. Wong, Charles Malespin, Pamela G. Conrad, Richard H. Becker, Mehdi Benna, B. D. Prats, Sushil K. Atreya, Caroline Freissinet, Heidi L. K. Manning, Melissa G. Trainer, Jennifer L. Eigenbrode, Heather B. Franz, and Paul R. Mahaffy
- Subjects
Martian ,Materials science ,010504 meteorology & atmospheric sciences ,Analytical chemistry ,Astronomy and Astrophysics ,Mars Exploration Program ,Mass spectrometry ,01 natural sciences ,Calibration gas ,Astrobiology ,Atmosphere ,Space and Planetary Science ,0103 physical sciences ,Sample Analysis at Mars ,Calibration ,010303 astronomy & astrophysics ,Quadrupole mass analyzer ,0105 earth and related environmental sciences - Abstract
The Sample Analysis at Mars (SAM) instrument suite of the Mars Science Laboratory (MSL) Curiosity rover is equipped to analyze both martian atmospheric gases and volatiles released by pyrolysis of solid surface materials, with target measurements including chemical and isotopic composition (Mahaffy et al., 2012). To facilitate assessment of instrument performance and validation of results obtained on Mars, SAM houses a calibration cell containing CO2, Ar, N2, Xe, and several fluorinated hydrocarbon compounds (Franz et al., 2014; Mahaffy et al., 2012). This report describes the first two experiments utilizing this calibration cell on Mars and gives results from analysis of data acquired with the SAM Quadrupole Mass Spectrometer (QMS). These data support the accuracy of isotope ratios obtained with the QMS (Conrad et al., 2016; Mahaffy et al., 2013) and provide ground-truth for reassessment of analytical constants required for atmospheric measurements, which were reported in previous contributions (Franz et al., 2015, 2014). The most significant implication of the QMS data involves reinterpretation of pre-launch contamination previously believed to affect only CO abundance measurements (Franz et al., 2015) to affect N2 abundances, as well. The corresponding adjustment to the N2 calibration constant presented here brings the atmospheric volume mixing ratios for Ar and N2 retrieved by SAM into closer agreement with those reported by the Viking mission (Owen et al., 1977; Oyama and Berdahl, 1977).
- Published
- 2017
- Full Text
- View/download PDF
5. Benzoic Acid as the Preferred Precursor for the Chlorobenzene Detected on Mars: Insights from the Unique Cumberland Analog Investigation
- Author
-
Paul R. Mahaffy, Richard V. Morris, Heather Graham, Charles Malespin, Jérémie Lasue, Erwin Dehouck, Cyril Szopa, Caroline Freissinet, C. A. Knudson, Amy McAdam, J. M. T. Lewis, Samuel Teinturier, PLANETO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), NASA Goddard Space Flight Center (GSFC), Department of Physics and Astronomy [Washington], Howard University, Center for Research and Exploration in Space Science and Technology [GSFC] (CRESST), Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), GSFC Solar System Exploration Division, Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement (LGL-TPE), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS), NASA Johnson Space Center (JSC), NASA, Sorbonne Université (SU)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS), Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement [Lyon] (LGL-TPE), École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), and Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
010504 meteorology & atmospheric sciences ,Evolved gas analysis ,Mars ,Mass spectrometry ,01 natural sciences ,Pre-biotic astrochemistry ,chemistry.chemical_compound ,0103 physical sciences ,Earth and Planetary Sciences (miscellaneous) ,Planetary science ,010303 astronomy & astrophysics ,Magnesium perchlorate ,0105 earth and related environmental sciences ,Benzoic acid ,Astronomy and Astrophysics ,Mars Exploration Program ,Astrobiology ,Geophysics ,chemistry ,13. Climate action ,Space and Planetary Science ,Chlorobenzene ,[SDU]Sciences of the Universe [physics] ,Sample Analysis at Mars ,Gas chromatography–mass spectrometry ,Nuclear chemistry - Abstract
The Cumberland drill sample from the Sheepbed mudstone in Gale Crater, Mars, revealed the first evidence of an indigenous Martian organic molecule, chlorobenzene, with the Sample Analysis at Mars (SAM) instrument on Curiosity. We created in the laboratory a mineralogical analog of the Cumberland sample (CBA) to aid in the understanding of the precursor organic molecule(s) that led to the detection of chlorobenzene. The CBA was analyzed by visible/near-infrared spectrometry, and the results are in accordance with Mastcam multispectral and the Chemical Camera passive analyses of Cumberland on Mars, demonstrating that the CBA is a relevant analog. CBA aliquots were spiked with 0.5 wt. % of benzoic acid and 1–2 wt. % of magnesium perchlorate and were run in SAM Testbed (TB). The TB evolved gas analysis (EGA) showed similarities with the Cumberland EGA on Mars in terms of the major volatiles H2O, CO2, and O2. The TB gas chromatography mass spectrometry displayed the presence of chlorobenzene at 23–28 pmol and dichlorobenzene. CBA aliquots were also analyzed in the laboratory with SAM-like EGA and the results on the laboratory setup confirmed the generation of chlorobenzene by a reaction between the benzoic acid and the magnesium perchlorates. The case for benzoic acid as a potential precursor for the chlorobenzene detected in the Martian regolith is strengthened with this new supporting laboratory data from the CBA. The quantification of chlorobenzene in the TB led to prediction of organic precursor abundance on Mars of hundreds, if not thousands, of parts per millions by weight.
- Published
- 2020
- Full Text
- View/download PDF
6. Indigenous and exogenous organics and surface–atmosphere cycling inferred from carbon and oxygen isotopes at Gale crater
- Author
-
Heather B. Franz, D. W. Ming, Charles Malespin, Daniel P. Glavin, Andrew Steele, J. L. Eigenbrode, P. D. Archer, C. A. Knudson, Paul R. Mahaffy, Sushil K. Atreya, Roger E. Summons, G. Flesch, J. C. Stern, Christopher H. House, E. Raaen, Brad Sutter, Rafael Navarro-González, Christopher R. Webster, Caroline Freissinet, Amy McAdam, J. M. T. Lewis, Maeva Millan, NASA Goddard Space Flight Center (GSFC), Jet Propulsion Laboratory (JPL), NASA-California Institute of Technology (CALTECH), Laboratoire de Génie des Procédés et Matériaux (LGPM), CentraleSupélec-Université Paris-Saclay, PLANETO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Sorbonne Université (SU)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS), Department of Climate and Space Sciences and Engineering (CLaSP), University of Michigan [Ann Arbor], University of Michigan System-University of Michigan System, Department of Geosciences [PennState], College of Earth and Mineral Sciences, Pennsylvania State University (Penn State), Penn State System-Penn State System-Pennsylvania State University (Penn State), Penn State System-Penn State System, Department of Astronomy [College Park], University of Maryland [College Park], University of Maryland System-University of Maryland System, Jacobs Technology ESCG, NASA Johnson Space Center (JSC), NASA, Geophysical Laboratory [Carnegie Institution], Carnegie Institution for Science [Washington], Universities Space Research Association (USRA), Department of Biology [Washington], Georgetown University [Washington] (GU), Instituto de Ciencias Nucleares [Mexico], Universidad Nacional Autónoma de México (UNAM), Department of Earth, Atmospheric and Planetary Sciences [MIT, Cambridge] (EAPS), and Massachusetts Institute of Technology (MIT)
- Subjects
010504 meteorology & atmospheric sciences ,δ18O ,Astronomy and Astrophysics ,Mars Exploration Program ,01 natural sciences ,Isotopes of oxygen ,Astrobiology ,chemistry.chemical_compound ,Interplanetary dust cloud ,Meteorite ,chemistry ,13. Climate action ,[SDU]Sciences of the Universe [physics] ,Martian surface ,0103 physical sciences ,Sample Analysis at Mars ,Environmental science ,Carbonate ,010303 astronomy & astrophysics ,0105 earth and related environmental sciences - Abstract
Since landing at Gale crater, Mars, in August 2012, the Curiosity rover has searched for evidence of past habitability, such as organic compounds, which have proved elusive to previous missions. We report results from pyrolysis experiments by Curiosity’s Sample Analysis at Mars (SAM) instrument, focusing on the isotopic compositions of evolved CO2 and O2, which provide clues to the identities and origins of carbon- and oxygen-bearing phases in surface materials. We find that O2 is enriched in 18O (δ18O about 40‰). Its behaviour reflects the presence of oxychlorine compounds at the Martian surface, common to aeolian and sedimentary deposits. Peak temperatures and isotope ratios (δ18O from −61 ± 4‰ to 64 ± 7‰; δ13C from –25 ± 20‰ to 56 ± 11‰) of evolved CO2 indicate the presence of carbon in multiple phases. We suggest that some organic compounds reflect exogenous input from meteorites and interplanetary dust, while others could derive from in situ formation processes on Mars, such as abiotic photosynthesis or electrochemical reduction of CO2. The observed carbonate abundances could reflect a sink for about 425–640 millibar of atmospheric CO2, while an additional 100–170 millibar could be stored in oxalates formed at the surface. In addition, oxygen isotope ratios of putative carbonates suggest the possibility of widespread cryogenic carbonate formation during a previous era. The pyrolysis experiments of the SAM instrument on board the Curiosity rover reconstruct the origin of organics at Gale crater. Some of them come from meteorites, but others have been formed in situ, with widespread past formation of carbonates via cryogenesis. More than 0.5 bar of CO2 might have precipitated from the atmosphere.
- Published
- 2020
- Full Text
- View/download PDF
7. Measurements of Oxychlorine species on Mars
- Author
-
P. D. Archer, Daniel P. Glavin, Richard C. Quinn, Timothy D. Glotch, M. M. Osterloo, B. Sutter, D. W. Ming, Samuel P. Kounaves, and Elizabeth B. Rampe
- Subjects
Martian ,Thermal Emission Spectrometer ,010504 meteorology & atmospheric sciences ,Physics and Astronomy (miscellaneous) ,Mars landing ,Mars Exploration Program ,Exploration of Mars ,01 natural sciences ,Astrobiology ,CRISM ,Space and Planetary Science ,0103 physical sciences ,Sample Analysis at Mars ,Earth and Planetary Sciences (miscellaneous) ,Thermal Emission Imaging System ,010303 astronomy & astrophysics ,Ecology, Evolution, Behavior and Systematics ,0105 earth and related environmental sciences - Abstract
Mars landed and orbiter missions have instrumentation capable of detecting oxychlorine phases (e.g. perchlorate, chlorate) on the surface. Perchlorate (~0.6 wt%) was first detected by the Wet Chemistry Laboratory in the surface material at the Phoenix Mars Landing site. Subsequent analyses by the Thermal Evolved Gas Analyser aboard the same lander detected an oxygen release (~465°C) consistent with the thermal decomposition of perchlorate. Recent thermal analysis by the Mars Science Laboratory's Sample Analysis at Mars instrument has also indicated the presence of oxychlorine phases (up to 1.2 wt%) in Gale Crater materials. Despite being at detectable concentrations, the Chemistry and Mineralogy (CheMin) X-ray diffractometer has not detected oxychlorine phases. This suggests that Gale Crater oxychlorine may exist as poorly crystalline phases or that perchlorate/chlorate mixtures exist, so that individual oxychlorine concentrations are below CheMin detection limits (~1 wt%). Although not initially designed to detect oxychlorine phases, reinterpretation of Viking Gas Chromatography/Mass Spectrometer data also suggest that oxychlorine phases are present in the Viking surface materials. Remote near-infrared spectral analyses by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) instrument indicate that at least some martian recurring slope lineae (RSL) have spectral signatures consistent with the presence of hydrated perchlorates or chlorates during the seasons when RSL are most extensive. Despite the thermal emission spectrometer, Thermal Emission Imaging System, Observatoire pour la Minéralogie, l'Eau, les Glaces et l'Activité and CRISM detection of hundreds of anhydrous chloride (~10–25 vol%) deposits, expected associated oxychlorine phases (>5–10 vol%) have not been detected. Total Cl and oxychlorine data sets from the Phoenix Lander and the Mars Science Laboratory missions could be used to develop oxychlorine versus total Cl correlations, which may constrain oxychlorine concentrations at other locations on Mars by using total Cl determined by other missions (e.g. Viking, Pathfinder, MER and Odyssey). Development of microfluidic or ‘lab-on-a-chip’ instrumentation has the potential to be the next generation analytical capability used to identify and quantify individual oxychlorine species on future landed robotic missions to Mars.
- Published
- 2016
- Full Text
- View/download PDF
8. Potential precursor compounds for chlorohydrocarbons detected in Gale Crater, Mars, by the SAM instrument suite on the Curiosity Rover
- Author
-
Roger E. Summons, Pascaline Francois, Daniel P. Glavin, Jennifer L. Eigenbrode, Benjamin Kotrc, Kristen E. Miller, and Caroline Freissinet
- Subjects
010504 meteorology & atmospheric sciences ,Mars Exploration Program ,01 natural sciences ,Toluene ,Chlorohydrocarbon ,Chloride ,Astrobiology ,Perchlorate ,chemistry.chemical_compound ,Geophysics ,chemistry ,Space and Planetary Science ,Geochemistry and Petrology ,Chlorobenzene ,0103 physical sciences ,Sample Analysis at Mars ,polycyclic compounds ,Earth and Planetary Sciences (miscellaneous) ,medicine ,Organic chemistry ,Benzene ,010303 astronomy & astrophysics ,0105 earth and related environmental sciences ,medicine.drug - Abstract
The detection of chlorinated organic compounds in near-surface sedimentary rocks by the Sample Analysis at Mars (SAM) instrument suite aboard the Mars Science Laboratory Curiosity rover represents an important step toward characterizing habitable environments on Mars. However, this discovery also raises questions about the identity and source of their precursor compounds and the processes by which they become chlorinated. Here we present the results of analog experiments, conducted under conditions similar to SAM gas chromatography-mass spectrometry analyses, in which we pyrolyzed potential precursor compounds in the presence of various Cl salts and Fe oxides that have been identified in Martian sediments. While chloromethanes could not be unambiguously identified, 1,2-dichloropropane (1,2-DCP), which is one of the chlorinated compounds identified in SAM data, is formed from the chlorination of aliphatic precursors. Additionally, propanol produced more 1,2-DCP than nonfunctionalized aliphatics such as propane or hexanes. Chlorinated benzenes ranging from chlorobenzene to hexachlorobenzene were identified in experiments with benzene carboxylic acids but not with benzene or toluene. Lastly, the distribution of chlorinated benzenes depended on both the substrate species and the nature and concentration of the Cl salt. Ca and Mg perchlorate, both of which release O2 in addition to Cl2 and HCl upon pyrolysis, formed less chlorobenzene relative to the sum of all chlorinated benzenes than in experiments with ferric chloride. FeCl3, a Lewis acid, catalyzes chlorination but does not aid combustion. Accordingly, both the precursor chemistry and sample mineralogy exert important controls on the distribution of chlorinated organics.
- Published
- 2016
- Full Text
- View/download PDF
9. Volatile Detections in Gale Crater Sediment and Sedimentary Rock
- Author
-
Paul R. Mahaffy, Brad Sutter, and Amy McAdam
- Subjects
Basalt ,Impact crater ,Planet ,Sample Analysis at Mars ,Aeolian processes ,Sedimentary rock ,Context (language use) ,Mars Exploration Program ,Geology ,Astrobiology - Abstract
This chapter discusses the detection of evolved gases from Gale crater sedimentary rock and eolian sediment by the Mars Science Laboratory rover's Sample Analysis at Mars (SAM) instrument. An overview is presented of the SAM instrument along with summary of key results from previous evolved gas analyses conducted at the Viking and Phoenix landing sites. The SAM measurements of evolved water, sulfur dioxide, carbon dioxide, carbon monoxide, oxygen, and nitrous oxide from Gale crater samples are presented. The phases responsible for the evolved gas detections and the implications for their presence are then evaluated. The water deuterium to hydrogen (D/H) ratio is discussed in context of understanding the degree of water loss from Mars. In the introduction of this book, we briefly explored the history of the exploration of Mars, where we discussed a major shift in the scientific thinking and public perception of the nature of the surface of Mars as new missions explored the Red Planet. The first observations of the surface sparked speculations of Mars being inhabited by intelligent beings, inspiring fantasy, science fiction, and, of course, further exploration. The turn came when Mariner 4 returned images of a lunar-like landscape, a monotonous basaltic world with many impact craters but no water, and therefore no prospects for life to find a habitable niche. The authors of the chapters of this book show how different our understanding of Mars is today from the historical Mariner 4 perspective!
- Published
- 2019
- Full Text
- View/download PDF
10. Hydrogen Reservoirs in Mars as Revealed by Martian Meteorites
- Author
-
Tomohiro Usui
- Subjects
Martian ,Meteorite ,Hydrogen ,chemistry ,Planet ,Sample Analysis at Mars ,Sediment ,chemistry.chemical_element ,Sedimentary rock ,Mars Exploration Program ,Geology ,Astrobiology - Abstract
This chapter summarizes the history of hydrogen isotope studies of Martian meteorites since the first detection of nonterrestrial hydrogen from the meteorites. Contamination of terrestrial water has been a major issue throughout most of this history. This review, in particular, focuses on recent ion microprobe studies that have contributed to the identification of Martian hydrogen reservoirs and have constrained their evolution throughout the planet’s history. NASA’s Curiosity rover has also provided valuable insights on the water history based on in situ hydrogen isotopic measurements of rocks in Gale crater since 2012 (see Chapter 12, Volatile Detections in Gale Crater Sediment and Sedimentary Rock: Results from the Mars Science Laboratory’s Sample Analysis at Mars Instrument).
- Published
- 2019
- Full Text
- View/download PDF
11. Organic molecules on Mars
- Author
-
ten Kate, Inge Loes, Petrology, and Petrology
- Subjects
Multidisciplinary ,Extraterrestrial Environment ,010504 meteorology & atmospheric sciences ,Atmospheric methane ,Mars ,Gale crater ,Mars Exploration Program ,Atmosphere of Mars ,Curiosity rover ,01 natural sciences ,Organic molecules ,Astrobiology ,Martian surface ,Exobiology ,0103 physical sciences ,Sample Analysis at Mars ,Environmental science ,Organic Chemicals ,General ,010303 astronomy & astrophysics ,0105 earth and related environmental sciences - Abstract
On 6 August 2012, the Sample Analysis at Mars (SAM) instrument suite ( 1 ) arrived on Mars onboard the Curiosity rover. SAM's main aim was to search for organic molecules on the martian surface. On page 1096 of this issue, Eigenbrode et al. ( 2 ) report SAM data that provide conclusive evidence for the presence of organic compounds—thiophenic, aromatic, and aliphatic compounds—in drill samples from Mars' Gale crater. In a related paper on page 1093, Webster et al. ( 3 ) report a strong seasonal variation in atmospheric methane, the simplest organic molecule, in the martian atmosphere. Both these finding are breakthroughs in astrobiology.
- Published
- 2018
12. Organic matter preserved in 3-billion-year-old mudstones at Gale crater, Mars
- Author
-
Patrice Coll, Arnaud Buch, Paul R. Mahaffy, Pamela G. Conrad, John P. Grotzinger, Heather B. Franz, Sanjeev Gupta, Caroline Freissinet, Daniel P. Glavin, Brad Sutter, Maeva Millan, Dawn Y. Sumner, Andrew Steele, P. D. Archer, Joel A. Hurowitz, Amy McAdam, Jennifer L. Eigenbrode, Rafael Navarro-González, Cyril Szopa, Charles Malespin, D. W. Ming, Roger E. Summons, NASA Goddard Space Flight Center (GSFC), Department of Earth, Atmospheric and Planetary Sciences [MIT, Cambridge] (EAPS), Massachusetts Institute of Technology (MIT), Geophysical Laboratory [Carnegie Institution], Carnegie Institution for Science [Washington], PLANETO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Georgetown University [Washington] (GU), Instituto de Ciencias Nucleares [Mexico], Universidad Nacional Autónoma de México (UNAM), Jacobs Technology ESCG, Astromaterials Research and Exploration Science (ARES), NASA Johnson Space Center (JSC), NASA-NASA, Stony Brook University [SUNY] (SBU), State University of New York (SUNY), Division of Geological and Planetary Sciences [Pasadena], California Institute of Technology (CALTECH), Department of Earth Science and Engineering [Imperial College London], Imperial College London, Department of Earth and Planetary Sciences [Davis], University of California [Davis] (UC Davis), University of California-University of California, Laboratoire de Génie des Procédés et Matériaux - EA 4038 (LGPM), CentraleSupélec, Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA (UMR_7583)), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS), NASA Goddard Space Flight Center ( GSFC ), Department of Earth, Atmospheric and Planetary Sciences [MIT, Cambridge] ( EAPS ), Massachusetts Institute of Technology ( MIT ), IMPEC - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales ( LATMOS ), Université de Versailles Saint-Quentin-en-Yvelines ( UVSQ ) -Université Pierre et Marie Curie - Paris 6 ( UPMC ) -Institut national des sciences de l'Univers ( INSU - CNRS ) -Centre National de la Recherche Scientifique ( CNRS ) -Université de Versailles Saint-Quentin-en-Yvelines ( UVSQ ) -Université Pierre et Marie Curie - Paris 6 ( UPMC ) -Institut national des sciences de l'Univers ( INSU - CNRS ) -Centre National de la Recherche Scientifique ( CNRS ), Georgetown University [Washington] ( GU ), Universidad Nacional Autónoma de México ( UNAM ), Astromaterials Research and Exploration Science ( ARES ), NASA Johnson Space Center ( JSC ), Stony Brook University [The State University of New York] ( SBU ), California Institute of Technology ( CALTECH ), Department of Earth Science and Engineering [London], University of California [Davis] ( UC Davis ), Laboratoire de Génie des Procédés et Matériaux - EA 4038 ( LGPM ), Laboratoire inter-universitaire des systèmes atmosphèriques ( LISA ), Centre National de la Recherche Scientifique ( CNRS ) -Université Paris-Est Créteil Val-de-Marne - Paris 12 ( UPEC UP12 ) -Université Paris Diderot - Paris 7 ( UPD7 ) -Institut national des sciences de l'Univers ( INSU - CNRS ), Carnegie Institution for Science, Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Universidad Nacional Autónoma de México = National Autonomous University of Mexico (UNAM), Department of Earth and Planetary Sciences [Univ California Davis] (EPS - UC Davis), University of California (UC)-University of California (UC), Laboratoire de Génie des Procédés et Matériaux (LGPM), CentraleSupélec-Université Paris-Saclay, Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), and Science and Technology Facilities Council (STFC)
- Subjects
010504 meteorology & atmospheric sciences ,Evolved gas analysis ,General Science & Technology ,chemistry.chemical_element ,01 natural sciences ,Astrobiology ,PHASES ,[SDU.STU.PL]Sciences of the Universe [physics]/Earth Sciences/Planetology ,0103 physical sciences ,Organic matter ,010303 astronomy & astrophysics ,[ SDU.ASTR ] Sciences of the Universe [physics]/Astrophysics [astro-ph] ,0105 earth and related environmental sciences ,Total organic carbon ,Martian ,chemistry.chemical_classification ,Science & Technology ,Multidisciplinary ,[ SDU.STU.PL ] Sciences of the Universe [physics]/Earth Sciences/Planetology ,[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph] ,PYROLYSIS ,Mars Exploration Program ,15. Life on land ,Multidisciplinary Sciences ,chemistry ,13. Climate action ,Sample Analysis at Mars ,Science & Technology - Other Topics ,Environmental science ,Carbon ,Pyrolysis - Abstract
Measuring martian organics and methane The Curiosity rover has been sampling on Mars for the past 5 years (see the Perspective by ten Kate). Eigenbrode et al. used two instruments in the SAM (Sample Analysis at Mars) suite to catch traces of complex organics preserved in 3-billion-year-old sediments. Heating the sediments released an array of organics and volatiles reminiscent of organic-rich sedimentary rock found on Earth. Most methane on Earth is produced by biological sources, but numerous abiotic processes have been proposed to explain martian methane. Webster et al. report atmospheric measurements of methane covering 3 martian years and found that the background level varies with the local seasons. The seasonal variation provides an important clue for determining the origin of martian methane. Science , this issue p. 1096 , p. 1093 ; see also p. 1068
- Published
- 2018
- Full Text
- View/download PDF
13. Structure and composition of the neutral upper atmosphere of Mars from the MAVEN NGIMS investigation
- Author
-
Paul R. Mahaffy, Mehdi Benna, Bruce M. Jakosky, S. Stone, Meredith Elrod, Stephen W. Bougher, and Roger V. Yelle
- Subjects
Geophysics ,Altitude ,Middle latitudes ,Sample Analysis at Mars ,Solar zenith angle ,General Earth and Planetary Sciences ,Environmental science ,Scale height ,Atmosphere of Mars ,Mars Exploration Program ,Atmospheric sciences ,Latitude ,Astrobiology - Abstract
The Mars Atmosphere and Volatile EvolutioN (MAVEN) Neutral Gas and Ion Mass Spectrometer (NGIMS) provides sensitive detections of neutral gas and ambient ion composition. NGIMS measurements of nine atomic and molecular neutral species, and their variation with altitude, latitude, and solar zenith angle are reported over several months of operation of the MAVEN mission. Sampling NGIMS signals from multiple neutral species every several seconds reveals persistent and unexpectedly large amplitude density structures. The scale height temperatures are mapped over the course of the first few months of the mission from high down to midlatitudes. NGIMS measurements near the homopause of 40Ar/N2 ratios agree with those reported by the Sample Analysis at Mars investigation and allow the altitude of the homopause for the most abundant gases to be established.
- Published
- 2015
- Full Text
- View/download PDF
14. The Mars Science Laboratory scooping campaign at Rocknest
- Author
-
Gregory H. Peters, Michelle E. Minitti, Stephen Kuhn, Joel A. Hurowitz, Robert C. Anderson, William Abbey, C. Hanson, K. Brown, M. Robinson, Kenneth S. Edgett, Calina Seybold, Luther W. Beegle, John P. Grotzinger, D. Liminodi, Louise Jandura, and Chris Roumeliotis
- Subjects
Martian ,Space and Planetary Science ,Rocknest ,Sample (material) ,Martian surface ,Sample Analysis at Mars ,Mineralogy ,Aeolian processes ,Astronomy and Astrophysics ,Mars Exploration Program ,Regolith ,Astrobiology - Abstract
During its 57th through 100th martian days (sols) in Gale Crater, the Mars Science Laboratory (MSL) Curiosity rover performed its first sample acquisition and processing of solid, granular sample. Samples were extracted from an aeolian sand deposit at a location called Rocknest. The Rocknest sampling site was identified to fit the prelaunch scientific and engineering requirements for this first time activity. Collected material was processed and delivered to two analytical instruments, Chemistry and Mineralogy (CheMin) and Sample Analysis at Mars (SAM), that both require delivery of a specific particle size range so that they can perform analyses to determine sample mineralogy and geochemistry. The choice of an aeolian sand deposit was based on requirements to ingest non-lithified, particulate sample for decontamination of the Sample Acquisition/Sample Processing and Handling (SA/SPaH) hardware, as well as to provide an opportunity to compare analytical results to aeolian deposits from elsewhere on the martian surface.
- Published
- 2015
- Full Text
- View/download PDF
15. Reevaluated martian atmospheric mixing ratios from the mass spectrometer on the Curiosity rover
- Author
-
Heidi L. K. Manning, Michael H. Wong, Melissa G. Trainer, Paul R. Mahaffy, Sushil K. Atreya, Jennifer C. Stern, and Heather B. Franz
- Subjects
Martian ,Atmosphere ,Atmosphere of Earth ,Space and Planetary Science ,Sample Analysis at Mars ,Environmental science ,Astronomy and Astrophysics ,Timekeeping on Mars ,Atmosphere of Mars ,Mars Exploration Program ,Atmospheric sciences ,Quadrupole mass analyzer ,Astrobiology - Abstract
The Sample Analysis at Mars (SAM) instrument suite of the Mars Science Laboratory (MSL) Curiosity rover is a miniature geochemical laboratory designed to analyze martian atmospheric gases as well as volatiles released by pyrolysis of solid surface materials ( Mahaffy et al., 2012 ). SAM began sampling the martian atmosphere to measure its chemical and isotopic composition shortly after Curiosity landed in Mars׳ Gale Crater in August 2012 ( Mahaffy et al., 2013 ). Analytical methods and constants required for atmospheric measurements with SAM׳s quadrupole mass spectrometer (QMS) were provided in a previous contribution ( Franz et al., 2014 ). Review of results obtained through application of these constants to repeated analyses over a full martian year and supporting studies with laboratory instruments offer new insights into QMS performance that allow refinement of the calibration constants and critical reassessment of their estimated uncertainties. This report describes the findings of these studies, provides updated calibration constants for atmospheric analyses with the SAM QMS, and compares volume mixing ratios for the martian atmosphere retrieved with the revised constants to those initially reported ( Mahaffy et al., 2013 ). Sufficient confidence is enabled by the extended data set to support calculation of precise abundances for CO rather than an upper limit. Reanalysis of data acquired on mission sols 45 and 77 (at solar longitudes of 175° and 193°, respectively) with the revised constants leads to the following average volume mixing ratios: CO 2 0.957(±0.016), N 2 0.0203(±0.0003), Ar 0.0207(±0.0002), O 2 1.73(±0.06)×10 −3 , CO 7.49(±0.026)×10 −4 .
- Published
- 2015
- Full Text
- View/download PDF
16. Identification of chlorobenzene in the Viking gas chromatograph-mass spectrometer data sets: Reanalysis of Viking mission data consistent with aromatic organic compounds on Mars
- Author
-
Melissa Guzman, Christopher P. McKay, Richard C. Quinn, Rafael Navarro-González, Cyril Szopa, Alfonso F. Davila, Caroline Freissinet, PLANETO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Sorbonne Université (SU)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS), NASA Ames Research Center (ARC), Laboratorio de Química de Plasmas y Estudios Planetarios [Mexico], Instituto de Ciencias Nucleares [Mexico], and Universidad Nacional Autónoma de México (UNAM)-Universidad Nacional Autónoma de México (UNAM)
- Subjects
Martian ,010504 meteorology & atmospheric sciences ,Spectrometer ,[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph] ,chemistry.chemical_element ,Mars Exploration Program ,01 natural sciences ,Astrobiology ,chemistry.chemical_compound ,Geophysics ,chemistry ,13. Climate action ,Space and Planetary Science ,Geochemistry and Petrology ,Chlorobenzene ,0103 physical sciences ,Sample Analysis at Mars ,Earth and Planetary Sciences (miscellaneous) ,Environmental science ,Gas chromatography–mass spectrometry ,010303 astronomy & astrophysics ,Pyrolysis ,Carbon ,0105 earth and related environmental sciences - Abstract
International audience; Motivated by the recent detection of chlorobenzene by the Sample Analysis at Mars instrument suite on the Curiosity rover, and the identification of its carbon source as indigenous to the martian sample, we reexamined the original, microfilm preserved, Viking gas chromatograph‐mass spectrometer (GCMS) data sets. We found evidence for the presence of chlorobenzene in Viking Lander 2 (VL‐2) data at levels corresponding to 0.08‐1.0 ppb (relative to sample mass), in runs when the sample was heated to 350°C and 500°C. Additionally, we found a correlation between the temperature dependence of the chlorobenzene signal and the dichloromethane signal originally identified by the Viking GCMS team. We considered possible sources of carbon that may have produced the chlorobenzene signal, by reaction with perchlorate during pyrolysis, including organic carbon indigenous to the martian parent sample and instrument contamination. We conclude that the chlorobenzene signal measured by VL‐2 originated from martian chlorine sources. We show how the carbon source could originate from the martian parent sample, though a carbon source contributed from instrument background cannot yet be ruled out.
- Published
- 2018
- Full Text
- View/download PDF
17. Mars rover steps up hunt for molecular signs of life
- Author
-
Paul Voosen
- Subjects
Martian ,Multidisciplinary ,Drill ,Extraterrestrial Environment ,010401 analytical chemistry ,Mars ,02 engineering and technology ,Mars Exploration Program ,Curiosity rover ,021001 nanoscience & nanotechnology ,01 natural sciences ,0104 chemical sciences ,Organic molecules ,Astrobiology ,Mars rover ,Sample Analysis at Mars ,Exobiology ,0210 nano-technology ,Geology - Abstract
Well into its fifth year on Mars, NASA9s Curiosity rover has one vital tool that it has yet to deploy: a set of nine stainless steel thimbles, filled with solvent, that are the mission9s best shot for detecting signs of ancient martian life. The team behind the Sample Analysis at Mars instrument has already made remarkable discoveries, including recent signs that organic molecules may be more common than not on the planet9s surface. But with the rover close to leaving a mudstone terrain that could prove a fertile target for its so-called wet chemistry cups, the mission faces a stark problem: The rover9s drill has stopped working.
- Published
- 2017
18. Analytical techniques for retrieval of atmospheric composition with the quadrupole mass spectrometer of the Sample Analysis at Mars instrument suite on Mars Science Laboratory
- Author
-
Paul R. Mahaffy, Melissa G. Trainer, Laurie A. Leshin, J. Thomas Nolan, Michael H. Wong, Mehdi Benna, Pamela G. Conrad, Christopher P. McKay, Heidi L. K. Manning, Sushil K. Atreya, Heather B. Franz, Charles Malespin, Jennifer C. Stern, E. Raaen, and Dan Harpold
- Subjects
Atmosphere ,Martian ,Atmosphere of Earth ,Spectrometer ,Space and Planetary Science ,Sample Analysis at Mars ,Environmental science ,Astronomy and Astrophysics ,Mars Exploration Program ,Atmosphere of Mars ,Quadrupole mass analyzer ,Astrobiology ,Remote sensing - Abstract
The Sample Analysis at Mars (SAM) instrument suite is the largest scientific payload on the Mars Science Laboratory (MSL) Curiosity rover, which landed in Mars׳ Gale Crater in August 2012. As a miniature geochemical laboratory, SAM is well-equipped to address multiple aspects of MSL׳s primary science goal, characterizing the potential past or present habitability of Gale Crater. Atmospheric measurements support this goal through compositional investigations relevant to martian climate evolution. SAM instruments include a quadrupole mass spectrometer, a tunable laser spectrometer, and a gas chromatograph that are used to analyze martian atmospheric gases as well as volatiles released by pyrolysis of solid surface materials ( Mahaffy et al., 2012 ). This report presents analytical methods for retrieving the chemical and isotopic composition of Mars׳ atmosphere from measurements obtained with SAM׳s quadrupole mass spectrometer. It provides empirical calibration constants for computing volume mixing ratios of the most abundant atmospheric species and analytical functions to correct for instrument artifacts and to characterize measurement uncertainties. Finally, we discuss differences in volume mixing ratios of the martian atmosphere as determined by SAM ( Mahaffy et al., 2013 ) and Viking ( Owen et al., 1977 , Oyama and Berdahl, 1977 ) from an analytical perspective. Although the focus of this paper is atmospheric observations, much of the material concerning corrections for instrumental effects also applies to reduction of data acquired with SAM from analysis of solid samples.
- Published
- 2014
- Full Text
- View/download PDF
19. Evidence of martian perchlorate, chlorate, and nitrate in Mars meteorite EETA79001: Implications for oxidants and organics
- Author
-
Samuel P. Kounaves, Brandi L. Carrier, Glen D. O’Neil, Shannon T. Stroble, and Mark W. Claire
- Subjects
Martian ,Chloromethane ,Chlorate ,Astronomy and Astrophysics ,Martian soil ,Mars Exploration Program ,Astrobiology ,Perchlorate ,chemistry.chemical_compound ,chemistry ,Meteorite ,Space and Planetary Science ,Environmental chemistry ,Sample Analysis at Mars - Abstract
The results from the Viking mission in the mid 1970s provided evidence that the martian surface contained oxidants responsible for destroying organic compounds. In 2008 the Phoenix Wet Chemistry Lab (WCL) found perchlorate ( ClO 4 - ) in three soil samples at concentrations from 0.5 to 0.7 wt%. The detection of chloromethane (CH3Cl) and dichloromethane (CH2Cl2) by the Viking pyrolysis gas chromatograph–mass spectrometer (GC–MS) may have been a result of ClO 4 - at that site oxidizing either terrestrial organic contaminates or, if present, indigenous organics. Recently, the Sample Analysis at Mars (SAM) instrument on the Mars Science Laboratory (MSL) Curiosity directly measured the presence of CH3Cl, CH2Cl2 and, along with measurements of HCl and oxygen, indirectly indicate the presence of ClO 4 - . However, except for Phoenix, no other direct measurement of the ClO 4 - anion in martian soil or rock has been made. We report here ion chromatographic (IC) and isotopic analyses of a unique sawdust portion of the martian meteorite EETA79001 that show the presence by mass of 0.6 ± 0.1 ppm ClO 4 - , 1.4 ± 0.1 ppm ClO 3 - , and 16 ± 0.2 ppm NO 3 - at a quantity and location within the meteorite that is difficult to reconcile with terrestrial contamination. The sawdust sample consists of basaltic material with a minor salt-rich inclusion in a mass ratio of ∼300:1, thus the salts may be 300 times more concentrated within the inclusion than the whole sample. The molar ratios of NO 3 - : ClO 4 - and Cl - : ClO 4 - , are very different for EETA79001 at ∼40:1 and 15:1, respectively, than the Antarctic soils and ice near where the meteorite was recovered at ∼10,000:1 and 5000:1, respectively. In addition, the isotope ratios for EETA79001 with δ15N = −10.48 ± 0.32‰ and δ18O = +51.61 ± 0.74‰ are significantly different from that of the nearby Miller Range blue ice with δ15N = +102.80 ± 0.14‰ and δ18O = +43.11 ± 0.64‰. This difference is notable, because if the meteorite had been contaminated with nitrate from the blue ice, the δ15N values should be the same. More importantly, the δ15N is similar to the uncontaminated Tissint Mars meteorite with δ15N = −4.5‰. These findings suggest a martian origin of the ClO 4 - , ClO 3 - and NO 3 - in EETA79001, and in conjunction with previous discoveries, support the hypothesis that they are present and ubiquitous on Mars. The presence of ClO 3 - in EETA79001 suggests the accompanying presence of other highly oxidizing oxychlorines such as ClO 2 - or ClO−, produced both by UV oxidation of Cl− and γ- and X-ray radiolysis of ClO 4 - . Since such intermediary species may contribute to oxidization of organic compounds, only highly refractory and/or well-protected organics are likely to survive. The global presence of ClO 4 - , ClO 3 - , and NO 3 - , has broad implications for the planet-wide water cycle, formation of brines, human habitability, organics, and life.
- Published
- 2014
- Full Text
- View/download PDF
20. Abundances and implications of volatile-bearing species from evolved gas analysis of the Rocknest aeolian deposit, Gale Crater, Mars
- Author
-
Laurie A. Leshin, Heather B. Franz, Daniel P. Glavin, Steven W. Squyres, Christopher P. McKay, Andrew Steele, Jennifer C. Stern, Douglas W. Ming, Brad Sutter, Ricardo Arevalo, John J. Jones, Amy McAdam, Richard V. Morris, P. D. Archer, A. A. Pavlov, Patrice Coll, Paul R. Mahaffy, James J. Wray, Jennifer L. Eigenbrode, Rafael Navarro-González, and Paul B. Niles
- Subjects
Martian ,Evolved gas analysis ,Martian soil ,Mars Exploration Program ,Astrobiology ,Geophysics ,Space and Planetary Science ,Geochemistry and Petrology ,Rocknest ,Martian surface ,Sample Analysis at Mars ,Earth and Planetary Sciences (miscellaneous) ,Clay minerals ,Geology - Abstract
The Sample Analysis at Mars (SAM) instrument on the Mars Science Laboratory (MSL) rover Curiosity detected evolved gases during thermal analysis of soil samples from the Rocknest aeolian deposit in Gale Crater. Major species detected (in order of decreasing molar abundance) were H₂O, SO₂, CO₂, and O₂, all at the µmol level, with HCl, H₂S, NH₃, NO, and HCN present at the tens to hundreds of nmol level. We compute weight % numbers for the major gases evolved by assuming a likely source and calculate abundances between 0.5 and 3 wt.%. The evolution of these gases implies the presence of both oxidized (perchlorates) and reduced (sulfides or H-bearing) species as well as minerals formed under alkaline (carbonates) and possibly acidic (sulfates) conditions. Possible source phases in the Rocknest material are hydrated amorphous material, minor clay minerals, and hydrated perchlorate salts (all potential H₂O sources), carbonates (CO₂), perchlorates (O₂ and HCl), and potential N-bearing materials (e.g., Martian nitrates, terrestrial or Martian nitrogenated organics, ammonium salts) that evolve NH₃, NO, and/or HCN. We conclude that Rocknest materials are a physical mixture in chemical disequilibrium, consistent with aeolian mixing, and that although weathering is not extensive, it may be ongoing even under current Martian surface conditions.
- Published
- 2014
- Full Text
- View/download PDF
21. Isotopes of nitrogen on Mars: Atmospheric measurements by Curiosity's mass spectrometer
- Author
-
Paul Mahaffy, Richard H. Becker, Heidi L. K. Manning, Charles Malespin, Christopher P. McKay, Rafael Navarro-González, Melissa G. Trainer, Bruce M. Jakosky, Jennifer C. Stern, Heather B. Franz, Sushil K. Atreya, Pamela G. Conrad, Michael H. Wong, Tobias Owen, Andrew Steele, John H. Jones, and Robert O. Pepin
- Subjects
Physics ,Martian ,Analytical chemistry ,chemistry.chemical_element ,Mars Exploration Program ,Mass spectrometry ,Nitrogen ,Isotopes of nitrogen ,Astrobiology ,Geophysics ,chemistry ,Meteorite ,Sample Analysis at Mars ,General Earth and Planetary Sciences ,Quadrupole mass analyzer ,Regular Articles - Abstract
[1] The Sample Analysis at Mars (SAM) instrument suite on the Mars Science Laboratory (MSL) measured a Mars atmospheric14N/15N ratio of 173 ± 11 on sol 341 of the mission, agreeing with Viking's measurement of 168 ± 17. The MSL/SAM value was based on Quadrupole Mass Spectrometer measurements of an enriched atmospheric sample, with CO2 and H2O removed. Doubly ionized nitrogen data at m/z 14 and 14.5 had the highest signal/background ratio, with results confirmed by m/z 28 and 29 data. Gases in SNC meteorite glasses have been interpreted as mixtures containing a Martian atmospheric component, based partly on distinctive14N/15N and40Ar/14N ratios. Recent MSL/SAM measurements of the40Ar/14N ratio (0.51 ± 0.01) are incompatible with the Viking ratio (0.35 ± 0.08). The meteorite mixing line is more consistent with the atmospheric composition measured by Viking than by MSL.
- Published
- 2013
- Full Text
- View/download PDF
22. Evidence for perchlorates and the origin of chlorinated hydrocarbons detected by SAM at the Rocknest aeolian deposit in Gale Crater
- Author
-
Jennifer L. Eigenbrode, Paul R. Mahaffy, Arnaud Buch, Rafael Navarro-González, Michel Cabane, Roger E. Summons, Pamela G. Conrad, Samuel Teinturier, Douglas W. Ming, David Coscia, Alexander A. Pavlov, Heather B. Franz, William B. Brinckerhoff, Caroline Freissinet, Jason P. Dworkin, Andrew Steele, Cyril Szopa, John P. Grotzinger, Daniel P. Glavin, Christopher P. McKay, Brad Sutter, Mildred G. Martin, A. E. Brunner, P. Douglas Archer, Sushil K. Atreya, Laurie A. Leshin, Kristen E. Miller, and Patrice Coll
- Subjects
010504 meteorology & atmospheric sciences ,Mineralogy ,01 natural sciences ,Astrobiology ,Perchlorate ,chemistry.chemical_compound ,Geochemistry and Petrology ,0103 physical sciences ,Earth and Planetary Sciences (miscellaneous) ,Benzene ,010303 astronomy & astrophysics ,0105 earth and related environmental sciences ,chemistry.chemical_classification ,Chloromethane ,Gale crater ,Geophysics ,Hydrocarbon ,chemistry ,13. Climate action ,Space and Planetary Science ,Chlorobenzene ,Rocknest ,Environmental chemistry ,Sample Analysis at Mars ,Aeolian processes ,Pyrolysis ,Geology - Abstract
[1] A single scoop of the Rocknest aeolian deposit was sieved (
- Published
- 2013
- Full Text
- View/download PDF
23. THE AMORPHOUS COMPOSITION OF THREE MUDSTONE SAMPLES FROM GALE CRATER: IMPLICATIONS FOR WEATHERING AND DIAGENETIC PROCESSES ON MARS
- Author
-
Cherie N. Achilles, R. T. Downs, P. I. Craig, P. D. Archer, L. M. Thompson, E. B. Rampe, D. W. Ming, Robert M. Hazen, R. Gellert, Allan H. Treiman, Albert S. Yen, R. V. Morris, Crisp. J. A., Brad Sutter, John P. Grotzinger, Steve J. Chipera, Shaunna M. Morrison, Amy McAdam, David F. Blake, D. T. Vaniman, and Thomas F. Bristow
- Subjects
Mineralogy ,Mars Exploration Program ,engineering.material ,Hematite ,Diagenesis ,Astrobiology ,Amorphous solid ,Ferrihydrite ,visual_art ,Sample Analysis at Mars ,engineering ,visual_art.visual_art_medium ,Plagioclase ,Clay minerals ,Geology - Abstract
The Mars Science Laboratory rover, Curiosity, is exploring the lowermost formation of Gale crater's central mound. Within this formation, three samples named Marimba, Quela, and Sebina have been analyzed by the CheMin X-ray diffractometer and the Alpha Particle X-ray Spectrometer (APXS) to determine mineralogy and bulk elemental chemistry, respectively. Marimba and Quela were also analyzed by the SAM (Sample Analysis at Mars) instrument to characterize the type and abundance of volatile phases detected in evolved gas analyses (EGA). CheMin data show similar proportions of plagioclase, hematite, and Ca-sulfates along with a mixture of di- and trioctahedral smectites at abundances of approximately 28, approximately 16, and approximately 18 wt% for Marimba, Quela, and Sebina. Approximately 50 wt% of each mudstone is comprised of X-ray amorphous and trace crystalline phases present below the CheMin detection limit (approximately 1 wt%). APXS measurements reveal a distinct bulk elemental chemistry that cannot be attributed to the clay mineral variation alone indicating a variable amorphous phase assemblage exists among the three mudstones. To explore the amorphous component, the calculated amorphous composition and SAM EGA results are used to identify amorphous phases unique to each mudstone. For example, the amorphous fraction of Marimba has twice the FeO wt% compared to Quela and Sebina yet, SAM EGA data show no evidence for Fe-sulfates. These data imply that Fe must reside in alternate Fe-bearing amorphous phases (e.g., nanophase iron oxides, ferrihydrite, etc.). Constraining the composition, abundances, and proposed identity of the amorphous fraction provides an opportunity to speculate on the past physical, chemical, and/or diagenetic processes which produced such phases in addition to sediment sources, lake chemistry, and the broader geologic history of Gale crater.
- Published
- 2017
- Full Text
- View/download PDF
24. Perchlorate formation on Mars through surface radiolysis-initiated atmospheric chemistry: A potential mechanism
- Author
-
Paul R. Mahaffy, Eric Wilson, Sushil K. Atreya, and Ralf I. Kaiser
- Subjects
Atmospheres ,010504 meteorology & atmospheric sciences ,Chlorine oxide ,Planetary Atmospheres, Clouds, and Hazes ,Mars ,radiolysis ,Atmospheric Composition and Structure ,Photochemistry ,01 natural sciences ,Planetary Geochemistry ,Astrobiology ,chemistry.chemical_compound ,Perchlorate ,Land/Atmosphere Interactions ,Planetary Sciences: Solar System Objects ,Geochemistry and Petrology ,Martian surface ,0103 physical sciences ,Constituent Sources and Sinks ,Earth and Planetary Sciences (miscellaneous) ,Planetary Sciences: Astrobiology ,Perchloric acid ,Geodesy and Gravity ,Global Change ,010303 astronomy & astrophysics ,Planetary Sciences: Solid Surface Planets ,Planetary Sciences: Fluid Planets ,Research Articles ,0105 earth and related environmental sciences ,Mineralogy and Petrology ,Martian ,surface‐atmosphere interactions ,Chemistry ,Planetary Atmospheres ,Mars Exploration Program ,Planetary Mineralogy and Petrology ,Geophysics ,Geochemistry ,Mass Balance ,Space and Planetary Science ,chlorine chemistry ,Atmospheric chemistry ,Sample Analysis at Mars ,Atmospheric Processes ,Hydrology ,Atmospheric ,Natural Hazards ,Composition ,Research Article - Abstract
Recent observations of the Martian surface by the Phoenix lander and the Sample Analysis at Mars indicate the presence of perchlorate (ClO4 –). The abundance and isotopic composition of these perchlorates suggest that the mechanisms responsible for their formation in the Martian environment may be unique in our solar system. With this in mind, we propose a potential mechanism for the production of Martian perchlorate: the radiolysis of the Martian surface by galactic cosmic rays, followed by the sublimation of chlorine oxides into the atmosphere and their subsequent synthesis to form perchloric acid (HClO4) in the atmosphere, and the surface deposition and subsequent mineralization of HClO4 in the regolith to form surface perchlorates. To evaluate the viability of this mechanism, we employ a one‐dimensional chemical model, examining chlorine chemistry in the context of Martian atmospheric chemistry. Considering the chlorine oxide, OClO, we find that an OClO flux as low as 3.2 × 107 molecules cm–2 s–1 sublimated into the atmosphere from the surface could produce sufficient HClO4 to explain the perchlorate concentration on Mars, assuming an accumulation depth of 30 cm and integrated over the Amazonian period. Radiolysis provides an efficient pathway for the oxidation of chlorine, bypassing the efficient Cl/HCl recycling mechanism that characterizes HClO4 formation mechanisms proposed for the Earth but not Mars., Key Points Mechanism initiated by radiolysis in the surface can potentially account for observed Martian perchlorate concentrationsInjection of oxides of chlorine from the surface into the atmosphere is potentially an effective way of forming perchloric acidMartian perchlorate is an important oxidant but poorly characterized
- Published
- 2016
25. French instruments for in-situ missions: Past, present and future
- Author
-
Philippe Laudet, Alain Gaboriaud, F. Rocard, Philippe Gaudon, P. W. Bousquet, and Florence Chiavassa
- Subjects
Martian ,Mars landing ,Aerospace Engineering ,Mars Exploration Program ,Exploration of Mars ,Astrobiology ,law.invention ,Telescope ,Planetary science ,Asteroid ,law ,Sample Analysis at Mars ,Environmental science ,Remote sensing - Abstract
Two in-situ missions were launched at the end of 2011, soon after the 62nd IAC conference, one to Mars and the other to one of its moons, Phobos. The first – Mars Science Laboratory – has been developed by NASA and will take the largest ever rover, Curiosity, to the surface of Mars. The second mission, Phobos-Grunt under the responsibility of Roscosmos, will carry out orbital and in-situ experiments before sending Phobos samples to Earth. As of June 2012, MSL is on its way to Mars: landing is planned on August 6th, 2012 at 07 h 31 AM (French time). On the other hand, unfortunately, Phobos-Grunt fell back to Earth in an uncontrolled re-entry on January15th , 2012, after rocket burns intended to set the craft on a course for Mars had failed 2 months earlier, shortly after launch. CNES is privileged, together with French scientific laboratories from CNRS, to have contributed to both missions. More specifically, we participate in two MSL instruments: – The mast part of ChemCam (Chemistry Camera) which will analyse by spectrometry the plasma light emitted by Martian rocks after a laser shot. ChemCam—Mast Unit encompasses a laser, a telescope, a camera and the associated electronics. – The Gas Chromatograph (SAM-GC), one of the three SAM (Sample Analysis at Mars) instruments. SAM detects a wide range of organic components from the atmosphere and the ground. It will also search for carbon isotopes, as well as noble gas isotopes. French contributions to Phobos Grunt involve: – The Gas-Chromatograph (GC) and the Tunable Diode Laser Absorption Spectrometer (TDLAS) of the Gas Analytic Package (GAP) which will characterise the molecular soil composition. – The supply of two panoramic cameras (PANCAM), of a pair of stereoscopic cameras (STEREO PAIR), and of a visible microscope (MicrOmega VIS). – The IR spectral microscope (MicrOmega IR), a new instrument that will perform the first in-situ characterisation by microscopic spectral imaging of the mineralogical and molecular composition of a probably nondifferentiated body. This characterisation will be decisive in determining the origin of Phobos, and as a reference for the sample analyses. Before describing extensively these contributions and their objectives, the paper will put them into perspective by presenting previous French involvement in surface missions, in particular on Cassini—Huygens, and on Rosetta—Philae. We will then elaborate on future missions, by presenting our participation in the in-situ segment of the ESA–NASA ExoMars mission, in the DLR–CNES Mascot asteroid lander to be carried by JAXA's Hayabusa 2 spacecraft, and other candidate missions such as GEMS (Geophysical Monitoring Station, in the final list for NASA's Discovery programme to be definitely selected for realisation in 2012), and Selene 2. We will conclude by highlighting the synergy between these missions for the various instrument families.
- Published
- 2012
- Full Text
- View/download PDF
26. A Reduced Organic Carbon Component in Martian Basalts
- Author
-
L. Kater, Hans E. F. Amundsen, R. Bowden, Edward P. Vicenzi, Pamela G. Conrad, Francis M. McCubbin, Steven B. Shirey, Allan H. Treiman, Sandra Siljeström, Richard N. Zare, Nabil Z. Boctor, Marc Fries, Mihaela Glamoclija, Maegan K. Spencer, Christopher D. K. Herd, Andrew Steele, Matthew R. Hammond, Marilyn L. Fogel, A. J. T. Jull, Emma S. Bullock, Amy L. Morrow, and Bjorn O. Mysen
- Subjects
Total organic carbon ,Martian ,Basalt ,Multidisciplinary ,Extraterrestrial Environment ,Chemistry ,Silicates ,Mars ,chemistry.chemical_element ,Mineralogy ,Oxides ,Meteoroids ,Mars Exploration Program ,Spectrum Analysis, Raman ,Carbon ,Astrobiology ,Carbon cycle ,Meteorite ,Sample Analysis at Mars ,Organic Chemicals ,Polycyclic Aromatic Hydrocarbons ,Crystallization ,Oxidation-Reduction - Abstract
Abiotic Martian Organics Understanding the sources and the formation mechanisms of organic carbon compounds on Mars has implications for our understanding of the martian carbon cycle. Steele et al. (p. 212 , published online 24 May) present measurements of organic material in 11 martian meteorites, including the Tissint meteorite, which fell in the Moroccan desert in July 2011. Ten of the meteorites contain complex hydrocarbons encased within igneous minerals. The results imply that the organics formed as the magma melt crystallized and are thus of abiotic origin.
- Published
- 2012
- Full Text
- View/download PDF
27. Collecting Samples in Gale Crater, Mars; an Overview of the Mars Science Laboratory Sample Acquisition, Sample Processing and Handling System
- Author
-
K. Brown, Joel A. Hurowitz, Scott McCloskey, Chris Roumeliotis, Avi Okon, Daniel Limonadi, Brett Kennedy, Luther W. Beegle, Louise Jandura, M. Robinson, Robert C. Anderson, Dan Sunshine, and Calina Seybold
- Subjects
Martian ,Planetary science ,Space and Planetary Science ,Rocknest ,Martian surface ,Sample Analysis at Mars ,Astronomy and Astrophysics ,Mars Exploration Program ,Mars Hand Lens Imager ,Regolith ,Geology ,Remote sensing ,Astrobiology - Abstract
The Mars Science Laboratory Mission (MSL), scheduled to land on Mars in the summer of 2012, consists of a rover and a scientific payload designed to identify and assess the habitability, geological, and environmental histories of Gale crater. Unraveling the geologic history of the region and providing an assessment of present and past habitability requires an evaluation of the physical and chemical characteristics of the landing site; this includes providing an in-depth examination of the chemical and physical properties of Martian regolith and rocks. The MSL Sample Acquisition, Processing, and Handling (SA/SPaH) subsystem will be the first in-situ system designed to acquire interior rock and soil samples from Martian surface materials. These samples are processed and separated into fine particles and distributed to two onboard analytical science instruments SAM (Sample Analysis at Mars Instrument Suite) and CheMin (Chemistry and Mineralogy) or to a sample analysis tray for visual inspection. The SA/SPaH subsystem is also responsible for the placement of the two contact instruments, Alpha Particle X-Ray Spectrometer (APXS), and the Mars Hand Lens Imager (MAHLI), on rock and soil targets. Finally, there is a Dust Removal Tool (DRT) to remove dust particles from rock surfaces for subsequent analysis by the contact and or mast mounted instruments (e.g. Mast Cameras (MastCam) and the Chemistry and Micro-Imaging instruments (ChemCam)).
- Published
- 2012
- Full Text
- View/download PDF
28. Mars methane detection and variability at Gale crater
- Author
-
Susanne P. Schwenzer, Christopher R. Webster, Tobias Owen, Mark T. Lemmon, Javier Martin-Torres, Sushil K. Atreya, Michael A. Mischna, John Bridges, P. Douglas Archer, G. Flesch, Patrice Coll, Kenneth A. Farley, Ralf Gellert, Alexander A. Pavlov, Daniel P. Glavin, Christopher P. McKay, Andrew Steele, Jennifer L. Eigenbrode, Paul R. Mahaffy, Timothy H. McConnochie, Rafael Navarro-González, John E. Moores, Charles Malespin, Pamela G. Conrad, Brad Sutter, Caroline Freissinet, María Paz Zorzano, Lance E. Christensen, and Pierre-Yves Meslin
- Subjects
Multidisciplinary ,Spectrometer ,Atmospheric methane ,Mars ,methane detection ,Mars Exploration Program ,Atmosphere of Mars ,Gale crater ,Methane ,Astrobiology ,chemistry.chemical_compound ,Interplanetary dust cloud ,Curiosity ,chemistry ,Carbonaceous chondrite ,Sample Analysis at Mars ,Environmental science - Abstract
Of water and methane on Mars The Curiosity rover has been collecting data for the past 2 years, since its delivery to Mars (see the Perspective by Zahnle). Many studies now suggest that many millions of years ago, Mars was warmer and wetter than it is today. But those conditions required an atmosphere that seems to have vanished. Using the Curiosity rover, Mahaffy et al. measured the ratio of deuterium to hydrogen in clays that were formed 3.0 to 3.7 billion years ago. Hydrogen escapes more readily than deuterium, so this ratio offers a snapshot measure of the ancient atmosphere that can help constrain when and how it disappeared. Most methane on Earth has a biological origin, so planetary scientists have keenly pursued its detection in the martian atmosphere as well. Now, Webster et al. have precisely confirmed the presence of methane in the martian atmosphere with the instruments aboard the Curiosity rover at Gale crater. Science , this issue p. 412 , p. 415 ; see also p. 370
- Published
- 2015
- Full Text
- View/download PDF
29. Measuring martian organics and methane
- Author
-
Brent Grocholski and Keith T. Smith
- Subjects
Martian ,chemistry.chemical_compound ,Multidisciplinary ,Atmospheric measurements ,Planetary science ,chemistry ,Sample Analysis at Mars ,Environmental science ,Sedimentary rock ,Mars Exploration Program ,Curiosity rover ,Methane ,Astrobiology - Abstract
Planetary Science The Curiosity rover has been sampling on Mars for the past 5 years (see the Perspective by ten Kate). Eigenbrode et al. used two instruments in the SAM (Sample Analysis at Mars) suite to catch traces of complex organics preserved in 3-billion-year-old sediments. Heating the sediments released an array of organics and volatiles reminiscent of organic-rich sedimentary rock found on Earth. Most methane on Earth is produced by biological sources, but numerous abiotic processes have been proposed to explain martian methane. Webster et al. report atmospheric measurements of methane covering 3 martian years and found that the background level varies with the local seasons. The seasonal variation provides an important clue for determining the origin of martian methane. Science , this issue p. [1096][1], p. [1093][2]; see also p. [1068][3] [1]: /lookup/doi/10.1126/science.aas9185 [2]: /lookup/doi/10.1126/science.aaq0131 [3]: /lookup/doi/10.1126/science.aat2662
- Published
- 2018
- Full Text
- View/download PDF
30. Particle transport and distribution on the Mars Science Laboratory mission: Effects of triboelectric charging
- Author
-
Kristo Kriechbaum, Luther W. Beegle, Louise Jandura, Avi Okon, Robert C. Anderson, Dan Sunshine, Gerald M. Fleming, Kenneth Manatt, Gregory H. Peters, E. Pounders, and L. S. Sollitt
- Subjects
Martian ,business.industry ,Drop (liquid) ,Astronomy and Astrophysics ,Martian soil ,Mars Exploration Program ,Electrostatics ,Astrobiology ,Space and Planetary Science ,Sample Analysis at Mars ,Particle ,Aerospace engineering ,business ,Triboelectric effect - Abstract
We report on the nature of fine particle (
- Published
- 2009
- Full Text
- View/download PDF
31. In situ analysis of martian regolith with the SAM experiment during the first mars year of the MSL mission: Identification of organic molecules by gas chromatography from laboratory measurements
- Author
-
Arnaud Buch, Maeva Millan, Cyril Szopa, Paul R. Mahaffy, Samuel Teinturier, Michel Cabane, Jean-Yves Bonnet, Patrice Coll, D. Coscia, Daniel P. Glavin, Caroline Freissinet, Pascaline Francois, Rafael Navarro-González, PLANETO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Institut Universitaire de France (IUF), Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche (M.E.N.E.S.R.), Laboratoire de Génie des Procédés et Matériaux - EA 4038 (LGPM), CentraleSupélec, Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA (UMR_7583)), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS), NASA Goddard Space Flight Center (GSFC), Center for Space Sciences and Technology (CSST), University of Maryland [Baltimore County] (UMBC), University of Maryland System-University of Maryland System, Instituto de Ciencias Nucleares [Mexico], Universidad Nacional Autónoma de México (UNAM), Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Poitiers-Institut de Chimie du CNRS (INC), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Centre National d'Etudes Spatiales (CNES), Universidad Nacional Autónoma de México = National Autonomous University of Mexico (UNAM), Université de Poitiers-Institut national des sciences de l'Univers (INSU - CNRS)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), IMPEC - LATMOS, Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Center for Space Science and Technology (CSST), and Université de Poitiers-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Martian ,010504 meteorology & atmospheric sciences ,[SDU.ASTR.EP]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,Astronomy and Astrophysics ,Martian soil ,Mars Exploration Program ,Mass spectrometry ,01 natural sciences ,Regolith ,Astrobiology ,[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] ,13. Climate action ,Space and Planetary Science ,Martian surface ,0103 physical sciences ,Sample Analysis at Mars ,Environmental science ,Gas chromatography–mass spectrometry ,010303 astronomy & astrophysics ,0105 earth and related environmental sciences - Abstract
International audience; The Sample Analysis at Mars (SAM) instrument onboard the Curiosity rover, is specifically designed for in situ molecular and isotopic analyses of martian surface materials and atmosphere. It contributes to the Mars Science Laboratory (MSL) missions primary scientific goal to characterize the potential past, present or future habitability of Mars. In all of the analyses of solid samples delivered to SAM so far, chlorinated organic compounds have been detected above instrument background levels and identified by gas chromatography coupled to mass spectrometry (GC–MS) (Freissinet et al., 2015; Glavin et al., 2013). While some of these may originate from reactions between oxychlorines and terrestrial organic carbon present in the instrument background (Glavin et al., 2013), others have been demonstrated to originate from indigenous organic carbon present in samples (Freissinet et al., 2015).We present here laboratory calibrations that focused on the analyses performed with the MXT-CLP GC column (SAM GC-5 channel) used for nearly all of the GC–MS analyses of the martian soil samples carried out with SAM to date. Complementary to the mass spectrometric data, gas chromatography allows us to separate and identify the species analyzable in a nominal SAM-GC run time of about 21 min. To characterize the analytical capabilities of this channel within the SAM Flight Model (FM) operating conditions on Mars, and their implications on the detection of organic matter, it is required to perform laboratory experimental tests and calibrations on spare model components. This work assesses the SAM flight GC-5 column efficiency, confirms the identification of the molecules based on their retention time, and enables a better understanding of the behavior of the SAM injection trap (IT) and its release of organic molecules. This work will enable further optimization of the SAM-GC runs for additional samples to be analyzed during the MSL mission.
- Published
- 2016
- Full Text
- View/download PDF
32. THE INVESTIGATION OF CHLORATE AND PERCHLORATE/SAPONITE MIXTURES AS A POSSIBLE SOURCE OF OXYGEN AND CHLORINE DETECTED BY THE SAMPLE ANALYSIS AT MARS (SAM) INSTRUMENT IN GALE CRATER, MARS
- Author
-
Douglas W. Ming, Paul R. Mahaffy, J. V. Clark, and B. Sutter
- Subjects
Chlorate ,Gale crater ,chemistry.chemical_element ,Mars Exploration Program ,engineering.material ,Oxygen ,Astrobiology ,chemistry.chemical_compound ,Perchlorate ,chemistry ,Sample Analysis at Mars ,engineering ,Chlorine ,Saponite ,Geology - Published
- 2016
- Full Text
- View/download PDF
33. Exploration of the Habitability of Mars: Development of Analytical Protocols for Measurement of Organic Carbon on the 2009 Mars Science Laboratory
- Author
-
Paul R. Mahaffy
- Subjects
Atmosphere ,Planetary science ,Space and Planetary Science ,Habitability ,Sample Analysis at Mars ,Astronomy and Astrophysics ,Mars Exploration Program ,Organic molecules ,Astrobiology - Abstract
The mission goal of the 2009 Mars Science Laboratory is to assess the habitability of a region on Mars. This large rover incorporates an Analytical Laboratory that contributes to this mission objective by means of a detailed characterization of mineralogy and chemistry. The Sample Analysis at Mars instrument suite in the Analytical Laboratory provides the capability to analyze volatiles released from rocks and soils and gases directly sample from the atmosphere. A primary focus of this suite is the detection and identification of organic molecules. The protocols for the extraction and analysis of organics under development for this mission are described as are experiments carried out on Mars analog samples to evaluate these methods.
- Published
- 2007
- Full Text
- View/download PDF
34. Methane and related trace species on Mars: Origin, loss, implications for life, and habitability
- Author
-
Sushil K. Atreya, Paul R. Mahaffy, and A. S. Wong
- Subjects
Martian ,chemistry.chemical_compound ,chemistry ,Space and Planetary Science ,Martian surface ,Sample Analysis at Mars ,Astronomy and Astrophysics ,Mars Exploration Program ,Atmosphere of Mars ,Life on Mars ,Exploration of Mars ,Methane ,Astrobiology - Abstract
One of the most puzzling aspects of Mars is that organics have not yet been found on the surface. The simplest of organic molecules, methane, was detected in the Martian atmosphere for the first time in 2003. The existence and behavior of methane on Mars is of great significance, as methane is a potential biomarker. In this paper we review our current understanding of possible sources and sinks of methane on Mars. We also investigate the role of other trace species in the maintenance and removal of methane from the atmosphere, as well as of other organic material from the surface. In particular, we examine the exogenous, hydrogeochemical—especially serpentinization—and biological sources, for supplying methane to Mars. We suggest that comets and meteorites are the least likely, whereas low-temperature serpentinization is the most plausible of all candidates to explain the methane observations. Nevertheless, it is premature to rule out the role of biology in producing methane on Mars, in view of available data. It is important to note that the loss of methane to surface must also be factored into any “source” scenarios for methane. Ordinary heterogeneous loss process to surface tends to be very slow. On the other hand, a reactive surface could potentially accelerate the destruction of methane. If correct, it would imply that a larger source of methane is present than currently estimated on the basis of photochemical loss alone. A reactive surface can also explain why no organic material has ever been detected on the Martian surface. The surface could become reactive if some oxidizer were present. We suggest that vast quantities of a powerful oxidant, hydrogen peroxide, can be produced in electrochemistry triggered by electrostatic fields generated in the Martian dust devils and dust storms, and in normal saltation process close to the surface. Finally, current observations are inadequate to prove or disprove the existence of life on Mars, now or in the past. The question of extraterrestrial life is a fundamental one, and it should be addressed meticulously on future missions to Mars. Measurements planned on the Mars Science Laboratory (MSL), especially carbon isotopes and chirality, will go a long way in meeting this goal. A brief overview of the MSL Mission and measurements relevant to the question of life and habitability of Mars is also presented in this paper.
- Published
- 2007
- Full Text
- View/download PDF
35. Organic molecules in the Sheepbed Mudstone, Gale Crater, Mars
- Author
-
Paul R. Mahaffy, Pascaline Francois, Pamela G. Conrad, Michel Cabane, Daniel P. Glavin, D. J. Des Marais, María Paz Zorzano, John P. Grotzinger, C. A. Malespin, Arnaud Buch, Rafael Navarro-González, Douglas W. Ming, Roger E. Summons, Caroline Freissinet, A. E. Brunner, Steven W. Squyres, Dawn Y. Sumner, M. G. Martin, P. D. Archer, Andrew Steele, Alberto G. Fairén, Cyril Szopa, Sushil K. Atreya, S. Kashyap, Brad Sutter, I. L. ten Kate, Jennifer L. Eigenbrode, Patrice Coll, Laurie A. Leshin, H. B. Franz, William B. Brinckerhoff, Kristen E. Miller, Jennifer C. Stern, F. J. Martin-Torres, Amy McAdam, B. D. Prats, Jason P. Dworkin, Alexander A. Pavlov, Petrology, Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences, Miller, Kristen, Summons, Roger E, NASA Goddard Space Flight Center (GSFC), Department of Earth, Atmospheric and Planetary Sciences [MIT, Cambridge] (EAPS), Massachusetts Institute of Technology (MIT), Center for Research and Exploration in Space Science and Technology [GSFC] (CRESST), Laboratoire de Génie des Procédés et Matériaux - EA 4038 (LGPM), CentraleSupélec, PLANETO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), NASA Johnson Space Center (JSC), NASA, Department of Atmospheric, Oceanic, and Space Sciences [Ann Arbor] (AOSS), University of Michigan [Ann Arbor], University of Michigan System-University of Michigan System, Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA (UMR_7583)), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS), NASA Ames Research Center (ARC), Centro de Astrobiologia [Madrid] (CAB), Instituto Nacional de Técnica Aeroespacial (INTA)-Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), Department of Astronomy [Ithaca], Cornell University [New York], Division of Geological and Planetary Sciences [Pasadena], California Institute of Technology (CALTECH), Department of Earth Sciences [Utrecht], Utrecht University [Utrecht], Rensselaer Polytechnic Institute (RPI), Goddard Earth Sciences and Technology and Research (GESTAR), NASA-Universities Space Research Association (USRA), Department of Chemistry [CUA], Catholic University of America, Department of Computer Science, Electrical and Space Engineering [Luleå], Luleå University of Technology (LUT), Instituto Andaluz de Ciencias de la Tierra (IACT), Consejo Superior de Investigaciones Científicas [Madrid] (CSIC)-Universidad de Granada = University of Granada (UGR), Astromaterials Research and Exploration Science (ARES), NASA-NASA, Instituto de Ciencias Nucleares [Mexico], Universidad Nacional Autónoma de México = National Autonomous University of Mexico (UNAM), Geophysical Laboratory [Carnegie Institution], Carnegie Institution for Science, Department of Earth and Planetary Science [UC Berkeley] (EPS), University of California [Berkeley] (UC Berkeley), University of California (UC)-University of California (UC), NASAFrench Space Agency (CNES), IMPEC - LATMOS, Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Consejo Superior de Investigaciones Científicas [Spain] (CSIC)-Instituto Nacional de Técnica Aeroespacial (INTA), Cornell University, Universities Space Research Association (USRA)-NASA, Consejo Superior de Investigaciones Científicas [Spain] (CSIC)-Universidad de Granada (UGR), Universidad Nacional Autónoma de México (UNAM), Carnegie Institution for Science [Washington], University of California [Berkeley], University of California-University of California, Universidad de Granada (UGR)-Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), and Consejo Superior de Investigaciones Científicas [Madrid] (CSIC)-Universidad de Granada (UGR)
- Subjects
organic molecules ,010504 meteorology & atmospheric sciences ,oxychlorine ,Curiosity rover ,[SDU.ASTR.EP]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,Mars ,Erosion and weathering ,01 natural sciences ,Astrobiology ,chemistry.chemical_compound ,Interplanetary dust cloud ,Volcanism ,Geochemistry and Petrology ,0103 physical sciences ,Earth and Planetary Sciences (miscellaneous) ,MSL ,010303 astronomy & astrophysics ,Research Articles ,0105 earth and related environmental sciences ,Martian ,Surface materials and properties ,[SDU.ASTR.SR]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR] ,Mars Science Laboratory ,Geology ,Mars Exploration Program ,Regolith ,Gale Crater ,Diagenesis ,Geophysics ,SAM ,Geochemistry ,Meteorite ,chemistry ,13. Climate action ,Chlorobenzene ,Space and Planetary Science ,Oxychlorine ,Sample Analysis at Mars ,chlorobenzene ,Organic molecules ,Astronomical and Space Sciences ,Composition - Abstract
The Sample Analysis at Mars (SAM) instrument on board the Mars Science Laboratory Curiosity rover is designed to conduct inorganic and organic chemical analyses of the atmosphere and the surface regolith and rocks to help evaluate the past and present habitability potential of Mars at Gale Crater. Central to this task is the development of an inventory of any organic molecules present to elucidate processes associated with their origin, diagenesis, concentration, and long-term preservation. This will guide the future search for biosignatures. Here we report the definitive identification of chlorobenzene (150–300 parts per billion by weight (ppbw)) and C2 to C4 dichloroalkanes (up to 70 ppbw) with the SAM gas chromatograph mass spectrometer (GCMS) and detection of chlorobenzene in the direct evolved gas analysis (EGA) mode, in multiple portions of the fines from the Cumberland drill hole in the Sheepbed mudstone at Yellowknife Bay. When combined with GCMS and EGA data from multiple scooped and drilled samples, blank runs, and supporting laboratory analog studies, the elevated levels of chlorobenzene and the dichloroalkanes cannot be solely explained by instrument background sources known to be present in SAM. We conclude that these chlorinated hydrocarbons are the reaction products of Martian chlorine and organic carbon derived from Martian sources (e.g., igneous, hydrothermal, atmospheric, or biological) or exogenous sources such as meteorites, comets, or interplanetary dust particles. Key Points First in situ evidence of nonterrestrial organics in Martian surface sediments Chlorinated hydrocarbons identified in the Sheepbed mudstone by SAM Organics preserved in sample exposed to ionizing radiation and oxidative condition
- Published
- 2015
- Full Text
- View/download PDF
36. The imprint of atmospheric evolution in the D/H of Hesperian clay minerals on Mars
- Author
-
Pamela G. Conrad, Daniel P. Glavin, Rafael Navarro-González, Paul R. Mahaffy, A. A. Pavlov, Amy McAdam, Shawn Domagal-Goldman, Jennifer C. Stern, Melissa G. Trainer, A. E. Brunner, J. L. Eigenbrode, Sushil K. Atreya, Christopher R. Webster, H. B. Franz, D. W. Ming, Kenneth H. Williford, John P. Grotzinger, G. Flesch, Charles Malespin, Caroline Freissinet, James J. Wray, Lance E. Christensen, Andrew Steele, T. C. Owen, L. A. Leshin, Paul B. Niles, and John H. Jones
- Subjects
Martian ,Multidisciplinary ,Hydrogen ,MSL-Radiation ,chemistry.chemical_element ,Mars ,Atmosphere of Mars ,Mars Exploration Program ,Gale crater ,Astrobiology ,chemistry ,Impact crater ,Sample Analysis at Mars ,D/H ratio ,Hesperian ,Clay minerals ,Geology - Abstract
Of water and methane on Mars The Curiosity rover has been collecting data for the past 2 years, since its delivery to Mars (see the Perspective by Zahnle). Many studies now suggest that many millions of years ago, Mars was warmer and wetter than it is today. But those conditions required an atmosphere that seems to have vanished. Using the Curiosity rover, Mahaffy et al. measured the ratio of deuterium to hydrogen in clays that were formed 3.0 to 3.7 billion years ago. Hydrogen escapes more readily than deuterium, so this ratio offers a snapshot measure of the ancient atmosphere that can help constrain when and how it disappeared. Most methane on Earth has a biological origin, so planetary scientists have keenly pursued its detection in the martian atmosphere as well. Now, Webster et al. have precisely confirmed the presence of methane in the martian atmosphere with the instruments aboard the Curiosity rover at Gale crater. Science , this issue p. 412 , p. 415 ; see also p. 370
- Published
- 2015
37. Evidence for indigenous nitrogen in sedimentary and aeolian deposits from the Curiosity rover investigations at Gale crater, Mars
- Author
-
Stern, Jennifer C., Sutter, Brad, Freissinet, Caroline, Navarro-González, Rafael, McKay, Christopher P., Archer, P. Douglas, Buch, Arnaud, Brunner, Anna E., Coll, Patrice, Eigenbrode, Jennifer L., Fairen, Alberto G., Franz, Heather B., Glavin, Daniel P., Kashyap, Srishti, McAdam, Amy C., Ming, Douglas W., Steele, Andrew, Szopa, Cyril, Wray, James J., Martín-Torres, F. Javier, Zorzano, Maria-Paz, Conrad, Pamela G., Mahaffy, Paul R., Kemppinen, Osku, Bridges, Nathan, Johnson, Jeffrey R., Minitti, Michelle, Cremers, David, Bell, James F., Edgar, Lauren, Farmer, Jack, Godber, Austin, Wadhwa, Meenakshi, Wellington, Danika, McEwan, Ian, Newman, Claire, Richardson, Mark, Charpentier, Antoine, Peret, Laurent, King, Penelope, Blank, Jennifer, Weigle, Gerald, Schmidt, Mariek, Li, Shuai, Milliken, Ralph, Robertson, Kevin, Sun, Vivian, Baker, Michael, Edwards, Christopher, Ehlmann, Bethany, Farley, Kenneth, Griffes, Jennifer, Grotzinger, John, Miller, Hayden, Newcombe, Megan, Pilorget, Cedric, Rice, Melissa, Siebach, Kirsten, Stack, Katie, Stolper, Edward, Brunet, Claude, Hipkin, Victoria, Léveillé, Richard, Marchand, Geneviève, Sánchez, Pablo Sobrón, Favot, Laurent, Cody, George, Flückiger, Lorenzo, Lees, David, Nefian, Ara, Martin, Mildred, Gailhanou, Marc, Westall, Frances, Israël, Guy, Agard, Christophe, Baroukh, Julien, Donny, Christophe, Gaboriaud, Alain, Guillemot, Philippe, Lafaille, Vivian, Lorigny, Eric, Paillet, Alexis, Pérez, René, Saccoccio, Muriel, Yana, Charles, Armiens-Aparicio, Carlos, Rodríguez, Javier Caride, Blázquez, Isaías Carrasco, Gómez, Felipe Gómez, Gómez-Elvira, Javier, Hettrich, Sebastian, Malvitte, Alain Lepinette, Jiménez, Mercedes Marín, Martínez-Frías, Jesús, Martín-Soler, Javier, Torres, F. Javier Martín, Jurado, Antonio Molina, Mora-Sotomayor, Luis, Caro, Guillermo Muñoz, López, Sara Navarro, Peinado-González, Verónica, Pla-García, Jorge, Manfredi, José Antonio Rodriguez, Romeral-Planelló, Julio José, Fuentes, Sara Alejandra Sans, Martinez, Eduardo Sebastian, Redondo, Josefina Torres, Urqui-O'Callaghan, Roser, Mier, María-Paz Zorzano, Chipera, Steve, Lacour, Jean-Luc, Mauchien, Patrick, Sirven, Jean-Baptiste, Manning, Heidi, Fairén, Alberto, Hayes, Alexander, Joseph, Jonathan, Squyres, Steven, Sullivan, Robert, Thomas, Peter, Dupont, Audrey, Lundberg, Angela, Melikechi, Noureddine, Mezzacappa, Alissa, DeMarines, Julia, Grinspoon, David, Reitz, Günther, Prats, Benito, Atlaskin, Evgeny, Genzer, Maria, Harri, Ari-Matti, Haukka, Harri, Kahanpää, Henrik, Kauhanen, Janne, Paton, Mark, Polkko, Jouni, Schmidt, Walter, Siili, Tero, Fabre, Cécile, Wray, James, Wilhelm, Mary Beth, Poitrasson, Franck, Patel, Kiran, Gorevan, Stephen, Indyk, Stephen, Paulsen, Gale, Gupta, Sanjeev, Bish, David, Schieber, Juergen, Gondet, Brigitte, Langevin, Yves, Geffroy, Claude, Baratoux, David, Berger, Gilles, Cros, Alain, d’Uston, Claude, Forni, Olivier, Gasnault, Olivier, Lasue, Jérémie, Lee, Qiu-Mei, Maurice, Sylvestre, Meslin, Pierre-Yves, Pallier, Etienne, Parot, Yann, Pinet, Patrick, Schröder, Susanne, Toplis, Mike, Lewin, Éric, Brunner, Will, Heydari, Ezat, Achilles, Cherie, Oehler, Dorothy, Cabane, Michel, Coscia, David, Dromart, Gilles, Robert, François, Sautter, Violaine, Le Mouélic, Stéphane, Mangold, Nicolas, Nachon, Marion, Stalport, Fabien, François, Pascaline, Raulin, François, Teinturier, Samuel, Cameron, James, Clegg, Sam, Cousin, Agnès, DeLapp, Dorothea, Dingler, Robert, Jackson, Ryan Steele, Johnstone, Stephen, Lanza, Nina, Little, Cynthia, Nelson, Tony, Wiens, Roger C., Williams, Richard B., Jones, Andrea, Kirkland, Laurel, Treiman, Allan, Baker, Burt, Cantor, Bruce, Caplinger, Michael, Davis, Scott, Duston, Brian, Edgett, Kenneth, Fay, Donald, Hardgrove, Craig, Harker, David, Herrera, Paul, Jensen, Elsa, Kennedy, Megan R., Krezoski, Gillian, Krysak, Daniel, Lipkaman, Leslie, Malin, Michael, McCartney, Elaina, McNair, Sean, Nixon, Brian, Posiolova, Liliya, Ravine, Michael, Salamon, Andrew, Saper, Lee, Stoiber, Kevin, Supulver, Kimberley, Van Beek, Jason, Van Beek, Tessa, Zimdar, Robert, French, Katherine Louise, Iagnemma, Karl, Miller, Kristen, Summons, Roger, Goesmann, Fred, Goetz, Walter, Hviid, Stubbe, Johnson, Micah, Lefavor, Matthew, Lyness, Eric, Breves, Elly, Dyar, M. Darby, Fassett, Caleb, Blake, David F., Bristow, Thomas, DesMarais, David, Edwards, Laurence, Haberle, Robert, Hoehler, Tori, Hollingsworth, Jeff, Kahre, Melinda, Keely, Leslie, McKay, Christopher, Bleacher, Lora, Brinckerhoff, William, Choi, David, Conrad, Pamela, Dworkin, Jason P., Eigenbrode, Jennifer, Floyd, Melissa, Garvin, James, Glavin, Daniel, Harpold, Daniel, Mahaffy, Paul, Martin, David K., McAdam, Amy, Pavlov, Alexander, Raaen, Eric, Smith, Michael D., Stern, Jennifer, Tan, Florence, Trainer, Melissa, Meyer, Michael, Posner, Arik, Voytek, Mary, Anderson, Robert C, Aubrey, Andrew, Beegle, Luther W., Behar, Alberto, Blaney, Diana, Brinza, David, Calef, Fred, Christensen, Lance, Crisp, Joy A., DeFlores, Lauren, Feldman, Jason, Feldman, Sabrina, Flesch, Gregory, Hurowitz, Joel, Jun, Insoo, Keymeulen, Didier, Maki, Justin, Mischna, Michael, Morookian, John Michael, Parker, Timothy, Pavri, Betina, Schoppers, Marcel, Sengstacken, Aaron, Simmonds, John J., Spanovich, Nicole, Juarez, Manuel de la Torre, Vasavada, Ashwin R., Webster, Christopher R., Yen, Albert, Archer, Paul Douglas, Cucinotta, Francis, Jones, John H., Ming, Douglas, Morris, Richard V., Niles, Paul, Rampe, Elizabeth, Nolan, Thomas, Fisk, Martin, Radziemski, Leon, Barraclough, Bruce, Bender, Steve, Berman, Daniel, Dobrea, Eldar Noe, Tokar, Robert, Vaniman, David, Williams, Rebecca M. E., Yingst, Aileen, Lewis, Kevin, Leshin, Laurie, Cleghorn, Timothy, Huntress, Wesley, Manhès, Gérard, Hudgins, Judy, Olson, Timothy, Stewart, Noel, Sarrazin, Philippe, Grant, John, Vicenzi, Edward, Wilson, Sharon A., Bullock, Mark, Ehresmann, Bent, Hamilton, Victoria, Hassler, Donald, Peterson, Joseph, Rafkin, Scot, Zeitlin, Cary, Fedosov, Fedor, Golovin, Dmitry, Karpushkina, Natalya, Kozyrev, Alexander, Litvak, Maxim, Malakhov, Alexey, Mitrofanov, Igor, Mokrousov, Maxim, Nikiforov, Sergey, Prokhorov, Vasily, Sanin, Anton, Tretyakov, Vladislav, Varenikov, Alexey, Vostrukhin, Andrey, Kuzmin, Ruslan, Clark, Benton, Wolff, Michael, McLennan, Scott, Botta, Oliver, Drake, Darrell, Bean, Keri, Lemmon, Mark, Schwenzer, Susanne P., Anderson, Ryan B., Herkenhoff, Kenneth, Lee, Ella Mae, Sucharski, Robert, Hernández, Miguel Ángel de Pablo, Ávalos, Juan José Blanco, Ramos, Miguel, Kim, Myung-Hee, Malespin, Charles, Plante, Ianik, Muller, Jan-Peter, Ewing, Ryan, Boynton, William, Downs, Robert, Fitzgibbon, Mike, Harshman, Karl, Morrison, Shaunna, Dietrich, William, Kortmann, Onno, Palucis, Marisa, Sumner, Dawn Y., Williams, Amy, Lugmair, Günter, Wilson, Michael A., Rubin, David, Jakosky, Bruce, Balic-Zunic, Tonci, Frydenvang, Jens, Jensen, Jaqueline Kløvgaard, Kinch, Kjartan, Koefoed, Asmus, Madsen, Morten Bo, Stipp, Susan Louise Svane, Boyd, Nick, Campbell, John L., Gellert, Ralf, Perrett, Glynis, Pradler, Irina, VanBommel, Scott, Jacob, Samantha, Owen, Tobias, Rowland, Scott, Savijärvi, Hannu, Boehm, Eckart, Böttcher, Stephan, Burmeister, Sönke, Guo, Jingnan, Köhler, Jan, García, César Martín, Mueller-Mellin, Reinhold, Wimmer-Schweingruber, Robert, Bridges, John C., McConnochie, Timothy, Benna, Mehdi, Franz, Heather, Bower, Hannah, Brunner, Anna, Blau, Hannah, Boucher, Thomas, Carmosino, Marco, Atreya, Sushil, Elliott, Harvey, Halleaux, Douglas, Rennó, Nilton, Wong, Michael, Pepin, Robert, Elliott, Beverley, Spray, John, Thompson, Lucy, Gordon, Suzanne, Newsom, Horton, Ollila, Ann, Williams, Joshua, Vasconcelos, Paulo, Bentz, Jennifer, Nealson, Kenneth, Popa, Radu, Kah, Linda C., Moersch, Jeffrey, Tate, Christopher, Day, Mackenzie, Kocurek, Gary, Hallet, Bernard, Sletten, Ronald, Francis, Raymond, McCullough, Emily, Cloutis, Ed, ten Kate, Inge Loes, Arvidson, Raymond, Fraeman, Abigail, Scholes, Daniel, Slavney, Susan, Stein, Thomas, Ward, Jennifer, Berger, Jeffrey, Moores, John E., NASA Goddard Space Flight Center (GSFC), NASA Johnson Space Center (JSC), NASA, Laboratorio de Química de Plasmas y Estudios Planetarios [Mexico], Instituto de Ciencias Nucleares [Mexico], Universidad Nacional Autónoma de México = National Autonomous University of Mexico (UNAM)-Universidad Nacional Autónoma de México = National Autonomous University of Mexico (UNAM), NASA Ames Research Center (ARC), Laboratoire de Génie des Procédés et Matériaux - EA 4038 (LGPM), CentraleSupélec, ASU School of Earth and Space Exploration (SESE), Arizona State University [Tempe] (ASU), Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA (UMR_7583)), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS), Department of Astronomy [Ithaca], Cornell University [New York], Centro de Astrobiologia [Madrid] (CAB), Instituto Nacional de Técnica Aeroespacial (INTA)-Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), Center for Research and Exploration in Space Science and Technology [GSFC] (CRESST), Centre de Recherche Public Henri Tudor [Technoport] (CRP Henri Tudor), Centre de Recherche Public Henri-Tudor [Luxembourg] (CRP Henri-Tudor), Department of Microbiology [Amherst], University of Massachusetts [Amherst] (UMass Amherst), University of Massachusetts System (UMASS)-University of Massachusetts System (UMASS), Astromaterials Research and Exploration Science (ARES), NASA-NASA, Geophysical Laboratory [Carnegie Institution], Carnegie Institution for Science, PLANETO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), School of Earth and Atmospheric Sciences [Atlanta], Georgia Institute of Technology [Atlanta], Instituto Andaluz de Ciencias de la Tierra (IACT), Consejo Superior de Investigaciones Científicas [Madrid] (CSIC)-Universidad de Granada (UGR), Department of Computer Science, Electrical and Space Engineering [Luleå], Luleå University of Technology (LUT), Universidad Nacional Autónoma de México (UNAM)-Universidad Nacional Autónoma de México (UNAM), Carnegie Institution for Science [Washington], Universidad de Granada (UGR)-Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Cornell University, Instituto Nacional de Técnica Aeroespacial (INTA)-Consejo Superior de Investigaciones Científicas [Spain] (CSIC), Department of Microbiology, IMPEC - LATMOS, Universidad de Granada (UGR)-Consejo Superior de Investigaciones Científicas [Spain] (CSIC), and Consejo Superior de Investigaciones Científicas [Madrid] (CSIC)-Universidad de Granada = University of Granada (UGR)
- Subjects
Martian ,Multidisciplinary ,010504 meteorology & atmospheric sciences ,Water on Mars ,nitrates ,astrobiology ,[SDU.ASTR.EP]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,Mars ,Mars Exploration Program ,01 natural sciences ,nitrogen ,Astrobiology ,Curiosity ,13. Climate action ,Rocknest ,0103 physical sciences ,Sample Analysis at Mars ,Physical Sciences ,Aeolian processes ,Composition of Mars ,010303 astronomy & astrophysics ,Nitrogen cycle ,Geology ,0105 earth and related environmental sciences - Abstract
International audience; The Sample Analysis at Mars (SAM) investigation on the Mars Science Laboratory (MSL) Curiosity rover has detected oxidized nitrogen-bearing compounds during pyrolysis of scooped aeolian sediments and drilled sedimentary deposits within Gale crater. Total N concentrations ranged from 20 to 250 nmol N per sample. After subtraction of known N sources in SAM, our results support the equivalent of 110–300 ppm of nitrate in the Rocknest (RN) aeolian samples, and 70–260 and 330–1,100 ppm nitrate in John Klein (JK) and Cumberland (CB) mudstone deposits, respectively. Discovery of indigenous martian nitrogen in Mars surface materials has important implications for habitability and, specifically, for the potential evolution of a nitrogen cycle at some point in martian history. The detection of nitrate in both wind-drifted fines (RN) and in mudstone (JK, CB) is likely a result of N2 fixation to nitrate generated by thermal shock from impact or volcanic plume lightning on ancient Mars. Fixed nitrogen could have facilitated the development of a primitive nitrogen cycle on the surface of ancient Mars, potentially providing a biochemically accessible source of nitrogen.
- Published
- 2015
- Full Text
- View/download PDF
38. Liquid Water at Crater Gale, Mars
- Author
-
Martín-Torres J, Buenestado Jf, and Zorzano Mp
- Subjects
Martian ,Atmosphere ,Rymd- och flygteknik ,Geography ,Impact crater ,Dynamic Albedo of Neutrons ,Sample Analysis at Mars ,Aerospace Engineering ,Mars Exploration Program ,Water cycle ,Regolith ,Astrobiology - Abstract
Suspicion that Mars could have transient liquid water on its surface through deliquescence of salts to form aqueous solutions or brines is an old proposal whose inquiry was boosted by Phoenix Lander observations. It provided some images of what were claimed to be brines, the presence of which at its landing site was compatible with the atmospheric parameters and the composition of the soil observed. On the other hand, the so called Recurrent Slope Lineae (RSL) often imaged by orbiters, were considered as another clue pointing to the occurrence of the phenomenon, since it was thought that they might be caused by it. Now, Curiosity rover has performed the first in-situ multi-instrumental study on Mars’ surface, having collected the most comprehensive environmental data set ever taken by means of their instruments Rover Environmental Monitoring Station (REMS), Dynamic Albedo of Neutrons (DAN), and Sample Analysis at Mars (SAM). REMS is providing continuous and accurate measurements of the relative humidity and surface and air temperatures among other parameters, and DAN and SAM provide the water content of the regolith and the atmosphere respectively. Analysis of these data has allowed to establish the existence of a present day active water cycle between the atmosphere and the regolith, that changes according to daily and seasonal cycles, and that is mediated by the presence of brines during certain periods of each and every day. Importantly, the study shows that the conditions for the occurrence of deliquescence are favourable even at equatorial latitudes where, at first, it was thought they were not due to the temperature and relative humidity conditions. This study provides new keys for the understanding of martian environment, and opens interesting lines of research and studies for future missions which may even have a bearing on extant microbial life. Godkänd; 2015; 20150702 (javmar)
- Published
- 2015
- Full Text
- View/download PDF
39. A Habitable Fluvio-Lacustrine Environment at Yellowknife Bay, Gale Crater, Mars
- Author
-
J. P. Grotzinger, D. Y. Sumner, L. C. Kah, K. Stack, S. Gupta, L. Edgar, D. Rubin, K. Lewis, J. Schieber, N. Mangold, R. Milliken, P. G. Conrad, D. DesMarais, J. Farmer, K. Siebach, F. Calef, J. Hurowitz, S. M. McLennan, D. Ming, D. Vaniman, J. Crisp, A. Vasavada, K. S. Edgett, M. Malin, D. Blake, R. Gellert, P. Mahaffy, R. C. Wiens, S. Maurice, J. A. Grant, S. Wilson, R. C. Anderson, L. Beegle, R. Arvidson, B. Hallet, R. S. Sletten, M. Rice, J. Bell, J. Griffes, B. Ehlmann, R. B. Anderson, T. F. Bristow, W. E. Dietrich, G. Dromart, J. Eigenbrode, A. Fraeman, C. Hardgrove, K. Herkenhoff, L. Jandura, G. Kocurek, S. Lee, L. A. Leshin, R. Leveille, D. Limonadi, J. Maki, S. McCloskey, M. Meyer, M. Minitti, H. Newsom, D. Oehler, A. Okon, M. Palucis, T. Parker, S. Rowland, M. Schmidt, S. Squyres, A. Steele, E. Stolper, R. Summons, A. Treiman, R. Williams, A. Yingst, MSL Science Team, Osku Kemppinen, Nathan Bridges, Jeffrey R. Johnson, David Cremers, Austin Godber, Meenakshi Wadhwa, Danika Wellington, Ian McEwan, Claire Newman, Mark Richardson, Antoine Charpentier, Laurent Peret, Penelope King, Jennifer Blank, Gerald Weigle, Shuai Li, Kevin Robertson, Vivian Sun, Michael Baker, Christopher Edwards, Kenneth Farley, Hayden Miller, Megan Newcombe, Cedric Pilorget, Claude Brunet, Victoria Hipkin, Richard Léveillé, Geneviève Marchand, Pablo Sobrón Sánchez, Laurent Favot, George Cody, Lorenzo Flückiger, David Lees, Ara Nefian, Mildred Martin, Marc Gailhanou, Frances Westall, Guy Israël, Christophe Agard, Julien Baroukh, Christophe Donny, Alain Gaboriaud, Philippe Guillemot, Vivian Lafaille, Eric Lorigny, Alexis Paillet, René Pérez, Muriel Saccoccio, Charles Yana, Carlos Armiens-Aparicio, Javier Caride Rodríguez, Isaías Carrasco Blázquez, Felipe Gómez Gómez, Javier Gómez-Elvira, Sebastian Hettrich, Alain Lepinette Malvitte, Mercedes Marín Jiménez, Jesús Martínez-Frías, Javier Martín-Soler, F. Javier Martín-Torres, Antonio Molina Jurado, Luis Mora-Sotomayor, Guillermo Muñoz Caro, Sara Navarro López, Verónica Peinado-González, Jorge Pla-García, José Antonio Rodriguez Manfredi, Julio José Romeral-Planelló, Sara Alejandra Sans Fuentes, Eduardo Sebastian Martinez, Josefina Torres Redondo, Roser Urqui-O’Callaghan, María-Paz Zorzano Mier, Steve Chipera, Jean-Luc Lacour, Patrick Mauchien, Jean-Baptiste Sirven, Heidi Manning, Alberto Fairén, Alexander Hayes, Jonathan Joseph, Robert Sullivan, Peter Thomas, Audrey Dupont, Angela Lundberg, Noureddine Melikechi, Alissa Mezzacappa, Julia DeMarines, David Grinspoon, Günther Reitz, Benito Prats, Evgeny Atlaskin, Maria Genzer, Ari-Matti Harri, Harri Haukka, Henrik Kahanpää, Janne Kauhanen, Mark Paton, Jouni Polkko, Walter Schmidt, Tero Siili, Cécile Fabre, James Wray, Mary Beth Wilhelm, Franck Poitrasson, Kiran Patel, Stephen Gorevan, Stephen Indyk, Gale Paulsen, David Bish, Brigitte Gondet, Yves Langevin, Claude Geffroy, David Baratoux, Gilles Berger, Alain Cros, Claude d’Uston, Olivier Forni, Olivier Gasnault, Jérémie Lasue, Qiu-Mei Lee, Pierre-Yves Meslin, Etienne Pallier, Yann Parot, Patrick Pinet, Susanne Schröder, Mike Toplis, Éric Lewin, Will Brunner, Ezat Heydari, Cherie Achilles, Brad Sutter, Michel Cabane, David Coscia, Cyril Szopa, François Robert, Violaine Sautter, Stéphane Le Mouélic, Marion Nachon, Arnaud Buch, Fabien Stalport, Patrice Coll, Pascaline François, François Raulin, Samuel Teinturier, James Cameron, Sam Clegg, Agnès Cousin, Dorothea DeLapp, Robert Dingler, Ryan Steele Jackson, Stephen Johnstone, Nina Lanza, Cynthia Little, Tony Nelson, Richard B. Williams, Andrea Jones, Laurel Kirkland, Burt Baker, Bruce Cantor, Michael Caplinger, Scott Davis, Brian Duston, Donald Fay, David Harker, Paul Herrera, Elsa Jensen, Megan R. Kennedy, Gillian Krezoski, Daniel Krysak, Leslie Lipkaman, Elaina McCartney, Sean McNair, Brian Nixon, Liliya Posiolova, Michael Ravine, Andrew Salamon, Lee Saper, Kevin Stoiber, Kimberley Supulver, Jason Van Beek, Tessa Van Beek, Robert Zimdar, Katherine Louise French, Karl Iagnemma, Kristen Miller, Fred Goesmann, Walter Goetz, Stubbe Hviid, Micah Johnson, Matthew Lefavor, Eric Lyness, Elly Breves, M. Darby Dyar, Caleb Fassett, Laurence Edwards, Robert Haberle, Tori Hoehler, Jeff Hollingsworth, Melinda Kahre, Leslie Keely, Christopher McKay, Lora Bleacher, William Brinckerhoff, David Choi, Jason P. Dworkin, Melissa Floyd, Caroline Freissinet, James Garvin, Daniel Glavin, Daniel Harpold, David K. Martin, Amy McAdam, Alexander Pavlov, Eric Raaen, Michael D. Smith, Jennifer Stern, Florence Tan, Melissa Trainer, Arik Posner, Mary Voytek, Andrew Aubrey, Alberto Behar, Diana Blaney, David Brinza, Lance Christensen, Lauren DeFlores, Jason Feldman, Sabrina Feldman, Gregory Flesch, Insoo Jun, Didier Keymeulen, Michael Mischna, John Michael Morookian, Betina Pavri, Marcel Schoppers, Aaron Sengstacken, John J. Simmonds, Nicole Spanovich, Manuel de la Torre Juarez, Christopher R. Webster, Albert Yen, Paul Douglas Archer, Francis Cucinotta, John H. Jones, Richard V. Morris, Paul Niles, Elizabeth Rampe, Thomas Nolan, Martin Fisk, Leon Radziemski, Bruce Barraclough, Steve Bender, Daniel Berman, Eldar Noe Dobrea, Robert Tokar, Timothy Cleghorn, Wesley Huntress, Gérard Manhès, Judy Hudgins, Timothy Olson, Noel Stewart, Philippe Sarrazin, Edward Vicenzi, Mark Bullock, Bent Ehresmann, Victoria Hamilton, Donald Hassler, Joseph Peterson, Scot Rafkin, Cary Zeitlin, Fedor Fedosov, Dmitry Golovin, Natalya Karpushkina, Alexander Kozyrev, Maxim Litvak, Alexey Malakhov, Igor Mitrofanov, Maxim Mokrousov, Sergey Nikiforov, Vasily Prokhorov, Anton Sanin, Vladislav Tretyakov, Alexey Varenikov, Andrey Vostrukhin, Ruslan Kuzmin, Benton Clark, Michael Wolff, Oliver Botta, Darrell Drake, Keri Bean, Mark Lemmon, Susanne P. Schwenzer, Ella Mae Lee, Robert Sucharski, Miguel Ángel de Pablo Hernández, Juan José Blanco Ávalos, Miguel Ramos, Myung-Hee Kim, Charles Malespin, Ianik Plante, Jan-Peter Muller, Rafael Navarro-González, Ryan Ewing, William Boynton, Robert Downs, Mike Fitzgibbon, Karl Harshman, Shaunna Morrison, Onno Kortmann, Amy Williams, Günter Lugmair, Michael A. Wilson, Bruce Jakosky, Tonci Balic-Zunic, Jens Frydenvang, Jaqueline Kløvgaard Jensen, Kjartan Kinch, Asmus Koefoed, Morten Bo Madsen, Susan Louise Svane Stipp, Nick Boyd, John L. Campbell, Glynis Perrett, Irina Pradler, Scott VanBommel, Samantha Jacob, Tobias Owen, Hannu Savijärvi, Eckart Boehm, Stephan Böttcher, Sönke Burmeister, Jingnan Guo, Jan Köhler, César Martín García, Reinhold Mueller-Mellin, Robert Wimmer-Schweingruber, John C. Bridges, Timothy McConnochie, Mehdi Benna, Heather Franz, Hannah Bower, Anna Brunner, Hannah Blau, Thomas Boucher, Marco Carmosino, Sushil Atreya, Harvey Elliott, Douglas Halleaux, Nilton Rennó, Michael Wong, Robert Pepin, Beverley Elliott, John Spray, Lucy Thompson, Suzanne Gordon, Ann Ollila, Joshua Williams, Paulo Vasconcelos, Jennifer Bentz, Kenneth Nealson, Radu Popa, Jeffrey Moersch, Christopher Tate, Mackenzie Day, Raymond Francis, Emily McCullough, Ed Cloutis, Inge Loes ten Kate, Daniel Scholes, Susan Slavney, Thomas Stein, Jennifer Ward, Jeffrey Berger, John E. Moores, Division of Geological and Planetary Sciences [Pasadena], California Institute of Technology (CALTECH), Department of Earth and Planetary Science [UC Berkeley] (EPS), University of California [Berkeley], University of California-University of California, The University of Tennessee [Knoxville], Department of Earth Science and Technology [Imperial College London], Imperial College London, ASU School of Earth and Space Exploration (SESE), Arizona State University [Tempe] (ASU), US Geological Survey [Santa Cruz], United States Geological Survey [Reston] (USGS), Princeton University, Department of Geological Sciences [Bloomington], Indiana University [Bloomington], Indiana University System-Indiana University System, Laboratoire de Planétologie et Géodynamique [UMR 6112] (LPG), Université d'Angers (UA)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Department of Geological Sciences [Providence], Brown University, NASA Goddard Space Flight Center (GSFC), NASA Ames Research Center (ARC), Jet Propulsion Laboratory (JPL), NASA-California Institute of Technology (CALTECH), Department of Geosciences [Stony Brook], Stony Brook University [SUNY] (SBU), State University of New York (SUNY)-State University of New York (SUNY), State University of New York (SUNY), NASA Johnson Space Center (JSC), NASA, Planetary Science Institute [Tucson] (PSI), Department of Physics [Guelph], University of Guelph, Space Remote Sensing Group (ISR-2), Los Alamos National Laboratory (LANL), Institut de recherche en astrophysique et planétologie (IRAP), Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), Center for Earth and Planetary Studies [Washington] (CEPS), Smithsonian National Air and Space Museum, Smithsonian Institution-Smithsonian Institution, Department of Earth and Space Sciences [Seattle], University of Washington [Seattle], Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement [Lyon] (LGL-TPE), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-École normale supérieure - Lyon (ENS Lyon), Department of Geological Sciences [Austin], Jackson School of Geosciences (JSG), University of Texas at Austin [Austin]-University of Texas at Austin [Austin], Rensselaer Polytechnic Institute (RPI), Canadian Space Agency (CSA), NASA Headquarters, Institute of Meteoritics [Albuquerque] (IOM), The University of New Mexico [Albuquerque], University of Hawaii, Brock University [Canada], Cornell University [New York], Geophysical Laboratory [Carnegie Institution], Carnegie Institution for Science [Washington], Massachusetts Institute of Technology (MIT), Lunar and Planetary Institute [Houston] (LPI), GeoRessources, Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Centre de recherches sur la géologie des matières premières minérales et énergétiques (CREGU)-Institut national des sciences de l'Univers (INSU - CNRS), University of California [Berkeley] (UC Berkeley), University of California (UC)-University of California (UC), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement (LGL-TPE), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS), Carnegie Institution for Science, Institut national des sciences de l'Univers (INSU - CNRS)-Centre de recherches sur la géologie des matières premières minérales et énergétiques (CREGU)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), NWO-NSO: The role of perchlorates in the preservation of organic compounds on Mars, and Petrology
- Subjects
Geologic Sediments ,Salinity ,Extraterrestrial Environment ,Nitrogen ,General Science & Technology ,Iron ,Curiosity rover ,Mars ,[SDU.STU]Sciences of the Universe [physics]/Earth Sciences ,Astrobiology ,MSL Science Team ,Exobiology ,MSL ,Martian ,Multidisciplinary ,fluvial-lacustrine environments ,Biosphere ,Water ,Phosphorus ,Mars Exploration Program ,15. Life on land ,Hydrogen-Ion Concentration ,Carbon ,Oxygen ,Planetary science ,Bays ,13. Climate action ,Rocknest ,Sample Analysis at Mars ,Sedimentary rock ,Oxidation-Reduction ,Geology ,Sulfur ,Hydrogen - Abstract
International audience; The Curiosity rover discovered fine-grained sedimentary rocks, which are inferred to represent an ancient lake and preserve evidence of an environment that would have been suited to support a martian biosphere founded on chemolithoautotrophy. This aqueous environment was characterized by neutral pH, low salinity, and variable redox states of both iron and sulfur species. Carbon, hydrogen, oxygen, sulfur, nitrogen, and phosphorus were measured directly as key biogenic elements; by inference, phosphorus is assumed to have been available. The environment probably had a minimum duration of hundreds to tens of thousands of years. These results highlight the biological viability of fluvial-lacustrine environments in the post-Noachian history of Mars.
- Published
- 2014
- Full Text
- View/download PDF
40. The Mars science laboratory landing
- Author
-
Ruth Ann Chicoine, Guy Webster, Rachel Hoover, Nancy Neal Jones, Kathy Barnstorff, L. Cuesta, Steve W. Cole, Veronica M. Pagán, Donald M. Hassler, I. G. Mitrofanov, Michael L.J. Apuzzo, Michael Ravine, Rodrick Faccio, D.C. Agle, Dwayne Brown, and James Rickman
- Subjects
Extraterrestrial Environment ,business.industry ,Research ,United States National Aeronautics and Space Administration ,Mars landing ,Mars ,Mars Exploration Program ,Alpha particle X-ray spectrometer ,Space Flight ,Radiation assessment detector ,Mars Hand Lens Imager ,Exploration of Mars ,United States ,Astrobiology ,Dynamic Albedo of Neutrons ,Sample Analysis at Mars ,Exobiology ,Medicine ,Humans ,Surgery ,Off-Road Motor Vehicles ,Neurology (clinical) ,business - Published
- 2013
41. Abundance and isotopic composition of gases in the martian atmosphere from the Curiosity rover
- Author
-
Mahaffy, P. R., Webster, C. R., Atreya, S. K., Franz, H., Wong, M., Conrad, P. G., Harpold, D., Jones, J. J., Leshin, L. A., Manning, H., Owen, T., Pepin, R. O., Squyres, S., Trainer, M., Kemppinen, O., Bridges, N., Johnson, J. R., Minitti, M., Cremers, D., Bell, J. F., Edgar, L., Farmer, J., Godber, A., Wadhwa, M., Wellington, D., McEwan, I., Newman, C., Richardson, M., Charpentier, A., Peret, L., King, P., Blank, J., Weigle, G., Schmidt, M., Li, S., Milliken, R., Robertson, K., Sun, V., Baker, M., Edwards, C., Ehlmann, B., Farley, K., Griffes, J., Grotzinger, J., Miller, H., Newcombe, M., Pilorget, C., Rice, M., Siebach, K., Stack, K., Stolper, E., Brunet, C., Hipkin, V., Leveille, R., Marchand, G., Sanchez, P. S., Favot, L., Cody, G., Steele, A., Fluckiger, L., Lees, D., Nefian, A., Martin, M., Gailhanou, M., Westall, F., Israel, G., Agard, C., Baroukh, J., Donny, C., Gaboriaud, A., Guillemot, P., Lafaille, V., Lorigny, E., Paillet, A., Perez, R., Saccoccio, M., Yana, C., Armiens-Aparicio, C., Rodriguez, J. C., Blazquez, I. C., Gomez, F. G., Gomez-Elvira, J., Hettrich, S., Malvitte, A. L., Jimenez, M. M., Martinez-Frias, J., Martin-Soler, J., Martin-Torres, F. J., Jurado, A. M., Mora-Sotomayor, L., Caro, G. M., Lopez, S. N., Peinado-Gonzalez, V., Pla-Garcia, J., Manfredi, J. A. R., Romeral-Planello, J. J., Fuentes, S. A. S., Martinez, E. S., Redondo, J. T., Urqui-O'Callaghan, R., Mier, M.-P. Z., Chipera, S., Lacour, J.-L., Mauchien, P., Sirven, J.-B., Fairen, A., Hayes, A., Joseph, J., Sullivan, R., Thomas, P., Dupont, A., Lundberg, A., Melikechi, N., Mezzacappa, A., DeMarines, J., Grinspoon, D., Reitz, G., Prats, B., Atlaskin, E., Genzer, M., Harri, A.-M., Haukka, H., Kahanpaa, H., Kauhanen, J., Paton, M., Polkko, J., Schmidt, W., Siili, T., Fabre, C., Wray, J., Wilhelm, M. B., Poitrasson, F., Patel, K., Gorevan, S., Indyk, S., Paulsen, G., Gupta, S., Bish, D., Schieber, J., Gondet, B., Langevin, Y., Geffroy, C., Baratoux, D., Berger, G., Cros, A., d'Uston, C., Forni, O., Gasnault, O., Lasue, J., Lee, Q.-M., Maurice, S., Meslin, P.-Y., Pallier, E., Parot, Y., Pinet, P., Schroder, S., Toplis, M., Lewin, E., Brunner, W., Heydari, E., Achilles, C., Oehler, D., Sutter, B., Cabane, M., Coscia, D., Szopa, C., Dromart, G., Robert, F., Sautter, V., Le Mouelic, S., Mangold, N., Nachon, M., Buch, A., Stalport, F., Coll, P., Francois, P., Raulin, F., Teinturier, S., Cameron, J., Clegg, S., Cousin, A., DeLapp, D., Dingler, R., Jackson, R. S., Johnstone, S., Lanza, N., Little, C., Nelson, T., Wiens, R. C., Williams, R. B., Jones, A., Kirkland, L., Treiman, A., Baker, B., Cantor, B., Caplinger, M., Davis, S., Duston, B., Edgett, K., Fay, D., Hardgrove, C., Harker, D., Herrera, P., Jensen, E., Kennedy, M. R., Krezoski, G., Krysak, D., Lipkaman, L., Malin, M., McCartney, E., McNair, S., Nixon, B., Posiolova, L., Ravine, M., Salamon, A., Saper, L., Stoiber, K., Supulver, K., Van Beek, J., Van Beek, T., Zimdar, R., French, K. L., Iagnemma, K., Miller, K., Summons, R., Goesmann, F., Goetz, W., Hviid, S., Johnson, M., Lefavor, M., Lyness, E., Breves, E., Dyar, M. D., Fassett, C., Blake, D. F., Bristow, T., DesMarais, D., Edwards, L., Haberle, R., Hoehler, T., Hollingsworth, J., Kahre, M., Keely, L., McKay, C., Bleacher, L., Brinckerhoff, W., Choi, D., Dworkin, J. P., Eigenbrode, J., Floyd, M., Freissinet, C., Garvin, J., Glavin, D., Martin, D. K., McAdam, A., Pavlov, A., Raaen, E., Smith, M. D., Stern, J., Tan, F., Meyer, M., Posner, A., Voytek, M., Anderson, R. C., Aubrey, A., Beegle, L. W., Behar, A., Blaney, D., Brinza, D., Calef, F., Christensen, L., Crisp, J. A., DeFlores, L., Feldman, J., Feldman, S., Flesch, G., Hurowitz, J., Jun, I., Keymeulen, D., Maki, J., Mischna, M., Morookian, J. M., Parker, T., Pavri, B., Schoppers, M., Sengstacken, A., Simmonds, J. J., Spanovich, N., Juarez, M. d. l. T., Vasavada, A. R., Yen, A., Archer, P. D., Cucinotta, F., Ming, D., Morris, R. V., Niles, P., Rampe, E., Nolan, T., Fisk, M., Radziemski, L., Barraclough, B., Bender, S., Berman, D., Dobrea, E. N., Tokar, R., Vaniman, D., Williams, R. M. E., Yingst, A., Lewis, K., Cleghorn, T., Huntress, W., Manhes, G., Hudgins, J., Olson, T., Stewart, N., Sarrazin, P., Grant, J., Vicenzi, E., Wilson, S. A., Bullock, M., Ehresmann, B., Hamilton, V., Hassler, D., Peterson, J., Rafkin, S., Zeitlin, C., Fedosov, F., Golovin, D., Karpushkina, N., Kozyrev, A., Litvak, M., Malakhov, A., Mitrofanov, I., Mokrousov, M., Nikiforov, S., Prokhorov, V., Sanin, A., Tretyakov, V., Varenikov, A., Vostrukhin, A., Kuzmin, R., Clark, B., Wolff, M., McLennan, S., Botta, O., Drake, D., Bean, K., Lemmon, M., Schwenzer, S. P., Anderson, R. B., Herkenhoff, K., Lee, E. M., Sucharski, R., Hernandez, M. A. d. P., Avalos, J. J. B., Ramos, M., Kim, M.-H., Malespin, C., Plante, I., Muller, J.-P., Navarro-Gonzalez, R., Ewing, R., Boynton, W., Downs, R., Fitzgibbon, M., Harshman, K., Morrison, S., Dietrich, W., Kortmann, O., Palucis, M., Sumner, D. Y., Williams, A., Lugmair, G., Wilson, M. A., Rubin, D., Jakosky, B., Balic-Zunic, T., Frydenvang, J., Jensen, J. K., Kinch, K., Koefoed, A., Madsen, M. B., Stipp, S. L. S., Boyd, N., Campbell, J. L., Gellert, R., Perrett, G., Pradler, I., VanBommel, S., Jacob, S., Rowland, S., Savijarvi, H., Boehm, E., Bottcher, S., Burmeister, S., Guo, J., Kohler, J., Garcia, C. M., Mueller-Mellin, R., Wimmer-Schweingruber, R., Bridges, J. C., McConnochie, T., Benna, M., Bower, H., Brunner, A., Blau, H., Boucher, T., Carmosino, M., Elliott, H., Halleaux, D., Renno, N., Elliott, B., Spray, J., Thompson, L., Gordon, S., Newsom, H., Ollila, A., Williams, J., Vasconcelos, P., Bentz, J., Nealson, K., Popa, R., Kah, L. C., Moersch, J., Tate, C., Day, M., Kocurek, G., Hallet, B., Sletten, R., Francis, R., McCullough, E., Cloutis, E., ten Kate, I. L., Arvidson, R., Fraeman, A., Scholes, D., Slavney, S., Stein, T., Ward, J., Berger, J., Moores, J. E., GeoRessources, Institut national des sciences de l'Univers (INSU - CNRS)-Centre de recherches sur la géologie des matières premières minérales et énergétiques (CREGU)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), MSL Science Team, NWO-NSO: The role of perchlorates in the preservation of organic compounds on Mars, and Petrology
- Subjects
010504 meteorology & atmospheric sciences ,Curiosity rover ,chemistry.chemical_element ,[SDU.STU]Sciences of the Universe [physics]/Earth Sciences ,Mars ,MSL Mars Atmosphere Isotopis Composition ,martian atmosphere ,01 natural sciences ,Astrobiology ,Isotopic signature ,chemistry.chemical_compound ,0103 physical sciences ,MSL ,010303 astronomy & astrophysics ,0105 earth and related environmental sciences ,Martian ,Multidisciplinary ,δ13C ,Atmosphere of Mars ,Nitrogen ,chemistry ,13. Climate action ,Sample Analysis at Mars ,Carbon dioxide ,Environmental science ,Carbon monoxide - Abstract
Mars' Atmosphere from Curiosity The Sample Analysis at Mars (SAM) instrument on the Curiosity rover that landed on Mars in August last year is designed to study the chemical and isotopic composition of the martian atmosphere. Mahaffy et al. (p. 263 ) present volume-mixing ratios of Mars' five major atmospheric constituents (CO 2 , Ar, N 2 , O 2 , and CO) and isotope measurements of 40 Ar/ 36 Ar and C and O in CO 2 , based on data from one of SAM's instruments, obtained between 31 August and 21 November 2012. Webster et al. (p. 260 ) used data from another of SAM's instruments obtained around the same period to determine isotope ratios of H, C, and O in atmospheric CO 2 and H 2 O. Agreement between the isotopic ratios measured by SAM with those of martian meteorites, measured in laboratories on Earth, confirms the origin of these meteorites and implies that the current atmospheric reservoirs of CO 2 and H 2 O were largely established after the period of early atmospheric loss some 4 billion years ago.
- Published
- 2013
- Full Text
- View/download PDF
42. Curiosity at Gale Crater, Mars: Characterization and analysis of the rocknest sand shadow
- Author
-
Blake, D. F., Morris, R. V., Kocurek, G., Morrison, S. M., Downs, R. T., Bish, D., Ming, D. W., Edgett, K. S., Rubin, D., Goetz, W., Madsen, M. B., Sullivan, R., Gellert, R., Campbell, I., Treiman, A. H., McLennan, S. M., Yen, A. S., Grotzinger, J., Vaniman, D. T., Chipera, S. J., Achilles, C. N., Rampe, E. B., Sumner, D., Meslin, P.- Y., Maurice, S., Forni, O., Gasnault, O., Fisk, M., Schmidt, M., Mahaffy, P., Leshin, L. A., Glavin, D., Steele, A., Freissinet, C., Navarro-Gonzalez, R., Yingst, R. A., Kah, L. C., Bridges, N., Lewis, K. W., Bristow, T. F., Farmer, J. D., Crisp, J. A., Stolper, E. M., Des Marais, D. J., Sarrazin, P., Agard, C., Alves Verdasca, J. A., Anderson, R., Archer, D., Armiens-Aparicio, C., Arvidson, R., Atlaskin, E., Atreya, S., Aubrey, A., Baker, B., Baker, M., Balic-Zunic, T., Baratoux, D., Baroukh, J., Barraclough, B., Bean, K., Beegle, L., Behar, A., Bell, J., Bender, S., Benna, M., Bentz, J., Berger, G., Berger, J., Berman, D., Blanco Avalos, J. J., Blaney, D., Blank, J., Blau, H., Bleacher, L., Boehm, E., Botta, O., Bottcher, S., Boucher, T., Bower, H., Boyd, N., Boynton, B., Breves, E., Bridges, J., Brinckerhoff, W., Brinza, D., Brunet, C., Brunner, A., Brunner, W., Buch, A., Bullock, M., Burmeister, S., Cabane, M., Calef, F., Cameron, J., Cantor, B., Caplinger, M., Rodriguez, J. C., Carmosino, M., Blazquez, I. C., Charpentier, A., Choi, D., Clark, B., Clegg, S., Cleghorn, T., Cloutis, E., Cody, G., Coll, P., Conrad, P., Coscia, D., Cousin, A., Cremers, D., Cros, A., Cucinotta, F., d'Uston, C., Davis, S., Day, M., Juarez, M. d. l. T., DeFlores, L., DeLapp, D., DeMarines, J., Dietrich, W., Dingler, R., Donny, C., Drake, D., Dromart, G., Dupont, A., Duston, B., Dworkin, J., Dyar, M. D., Edgar, L., Edwards, C., Edwards, L., Ehlmann, B., Ehresmann, B., Eigenbrode, J., Elliott, B., Elliott, H., Ewing, R., Fabre, C., Fairen, A., Farley, K., Fassett, C., Favot, L., Fay, D., Fedosov, F., Feldman, J., Feldman, S., Fitzgibbon, M., Flesch, G., Floyd, M., Fluckiger, L., Fraeman, A., Francis, R., Francois, P., Franz, H., French, K. L., Frydenvang, J., Gaboriaud, A., Gailhanou, M., Garvin, J., Geffroy, C., Genzer, M., Godber, A., Goesmann, F., Golovin, D., Gomez, F. G., Gomez-Elvira, J., Gondet, B., Gordon, S., Gorevan, S., Grant, J., Griffes, J., Grinspoon, D., Guillemot, P., Guo, J., Gupta, S., Guzewich, S., Haberle, R., Halleaux, D., Hallet, B., Hamilton, V., Hardgrove, C., Harker, D., Harpold, D., Harri, A.-M., Harshman, K., Hassler, D., Haukka, H., Hayes, A., Herkenhoff, K., Herrera, P., Hettrich, S., Heydari, E., Hipkin, V., Hoehler, T., Hollingsworth, J., Hudgins, J., Huntress, W., Hurowitz, J., Hviid, S., Iagnemma, K., Indyk, S., Israel, G., Jackson, R., Jacob, S., Jakosky, B., Jensen, E., Jensen, J. K., Johnson, J., Johnson, M., Johnstone, S., Jones, A., Jones, J., Joseph, J., Jun, I., Kahanpaa, H., Kahre, M., Karpushkina, N., Kasprzak, W., Kauhanen, J., Keely, L., Kemppinen, O., Keymeulen, D., Kim, M.-H., Kinch, K., King, P., Kirkland, L., Koefoed, A., Kohler, J., Kortmann, O., Kozyrev, A., Krezoski, J., Krysak, D., Kuzmin, R., Lacour, J. L., Lafaille, V., Langevin, Y., Lanza, N., Lasue, J., Le Mouelic, S., Lee, E. M., Lee, Q.-M., Lees, D., Lefavor, M., Lemmon, M., Lepinette Malvitte, A., Leveille, R., Lewin-Carpintier, E., Li, S., Lipkaman, L., Little, C., Litvak, M., Lorigny, E., Lugmair, G., Lundberg, A., Lyness, E., Maki, J., Malakhov, A., Malespin, C., Malin, M., Mangold, N., Manning, H., Marchand, G., Marin Jimenez, M., Martin Garcia, C., Martin, D., Martin, M., Martinez-Frias, J., Martin-Soler, J., Martin-Torres, F. J., Mauchien, P., McAdam, A., McCartney, E., McConnochie, T., McCullough, E., McEwan, I., McKay, C., McNair, S., Melikechi, N., Meyer, M., Mezzacappa, A., Miller, H., Miller, K., Milliken, R., Minitti, M., Mischna, M., Mitrofanov, I., Moersch, J., Mokrousov, M., Molina Jurado, A., Moores, J., Mora-Sotomayor, L., Morookian, J. M., Mueller-Mellin, R., Muller, J.-P., Munoz Caro, G., Nachon, M., Navarro Lopez, S., Nealson, K., Nefian, A., Nelson, T., Newcombe, M., Newman, C., Newsom, H., Nikiforov, S., Niles, P., Nixon, B., Dobrea, E. N., Nolan, T., Oehler, D., Ollila, A., Olson, T., Owen, T., Pablo, H., Paillet, A., Pallier, E., Palucis, M., Parker, T., Parot, Y., Patel, K., Paton, M., Paulsen, G., Pavlov, A., Pavri, B., Peinado-Gonzalez, V., Pepin, R., Peret, L., Perez, R., Perrett, G., Peterson, J., Pilorget, C., Pinet, P., Pla-Garcia, J., Plante, I., Poitrasson, F., Polkko, J., Popa, R., Posiolova, L., Pradler, I., Prats, B., Prokhorov, V., Purdy, S. W., Raaen, E., Radziemski, L., Rafkin, S., Ramos, M., Raulin, F., Ravine, M., Reitz, G., Renno, N., Rice, M., Richardson, M., Robert, F., Rodriguez Manfredi, J. A., Romeral-Planello, J. J., Rowland, S., Saccoccio, M., Salamon, A., Sandoval, J., Sanin, A., Sans Fuentes, S. A., Saper, L., Sautter, V., Savijarvi, H., Schieber, J., Schmidt, W., Scholes, D., Schoppers, M., Schroder, S., Sebastian Martinez, E., Sengstacken, A., Shterts, R., Siebach, K., Siili, T., Simmonds, J., Sirven, J.-B., Slavney, S., Sletten, R., Smith, M., Sobron Sanchez, P., Spanovich, N., Spray, J., Squyres, S., Stack, K., Stalport, F., Stein, T., Stern, J., Stewart, N., Stipp, S. L. S., Stoiber, K., Sucharski, B., Summons, R., Sun, V., Supulver, K., Sutter, B., Szopa, C., Tate, C., Teinturier, S., ten Kate, I. L., Thomas, P., Thompson, L., Tokar, R., Toplis, M., Torres Redondo, J., Trainer, M., Tretyakov, V., Urqui-O'Callaghan, R., Van Beek, J., Van Beek, T., VanBommel, S., Varenikov, A., Vasavada, A., Vasconcelos, P., Vicenzi, E., Vostrukhin, A., Voytek, M., Wadhwa, M., Ward, J., Webster, C., Weigle, E., Wellington, D., Westall, F., Wiens, R. C., Wilhelm, M. B., Williams, A., Williams, J., Williams, R., Williams, R. B., Wilson, M., Wimmer-Schweingruber, R., Wolff, M., Wong, M., Wray, J., Wu, M., Yana, C., Zeitlin, C., Zimdar, R., Zorzano Mier, M.-P., GeoRessources, Institut national des sciences de l'Univers (INSU - CNRS)-Centre de recherches sur la géologie des matières premières minérales et énergétiques (CREGU)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), NASA Ames Research Center (ARC), NASA Johnson Space Center (JSC), NASA, Department of Geological Sciences [Austin], Jackson School of Geosciences (JSG), University of Texas at Austin [Austin]-University of Texas at Austin [Austin], Department of Geology [Tucson], University of Arizona, Department of Geological Sciences [Bloomington], Indiana University [Bloomington], Indiana University System-Indiana University System, Malin Space Science Systems (MSSS), NASA Goddard Space Flight Center (GSFC), NWO-NSO: The role of perchlorates in the preservation of organic compounds on Mars, and Petrology
- Subjects
Basalt ,Meridiani Planum ,Multidisciplinary ,010504 meteorology & atmospheric sciences ,Curiosity rover ,Geochemistry ,Mars ,[SDU.STU]Sciences of the Universe [physics]/Earth Sciences ,Mars Exploration Program ,Exploration of Mars ,01 natural sciences ,Astrobiology ,Impact crater ,13. Climate action ,MSL Mars Gale Crater Rocknest ,Rocknest ,0103 physical sciences ,Sample Analysis at Mars ,Aeolian processes ,MSL ,Rocknest aeolian deposit ,010303 astronomy & astrophysics ,Geology ,0105 earth and related environmental sciences - Abstract
The Rocknest aeolian deposit is similar to aeolian features analyzed by the Mars Exploration Rovers (MERs) Spirit and Opportunity. The fraction of sand
- Published
- 2013
- Full Text
- View/download PDF
43. Volatile, Isotope, and Organic Analysis of Martian Fines with the Mars Curiosity Rover
- Author
-
Leshin, L. A., Mahaffy, P. R., Webster, C. R., Cabane, M., Coll, P., Conrad, P. G., Archer, P. D., Atreya, S. K., Brunner, A. E., Buch, A., Eigenbrode, J. L., Flesch, G. J., Franz, H. B., Freissinet, C., Glavin, D. P., McAdam, A. C., Miller, K. E., Ming, D. W., Morris, R. V., Navarro-Gonzalez, R., Niles, P. B., Owen, T., Pepin, R. O., Squyres, S., Steele, A., Stern, J. C., Summons, R. E., Sumner, D. Y., Sutter, B., Szopa, C., Teinturier, S., Trainer, M. G., Wray, J. J., Grotzinger, J. P., Kemppinen, O., Bridges, N., Johnson, J. R., Minitti, M., Cremers, D., Bell, J. F., Edgar, L., Farmer, J., Godber, A., Wadhwa, M., Wellington, D., McEwan, I., Newman, C., Richardson, M., Charpentier, A., Peret, L., King, P., Blank, J., Weigle, G., Schmidt, M., Li, S., Milliken, R., Robertson, K., Sun, V., Baker, M., Edwards, C., Ehlmann, B., Farley, K., Griffes, J., Miller, H., Newcombe, M., Pilorget, C., Rice, M., Siebach, K., Stack, K., Stolper, E., Brunet, C., Hipkin, V., Leveille, R., Marchand, G., Sanchez, P. S., Favot, L., Cody, G., Fluckiger, L., Lees, D., Nefian, A., Martin, M., Gailhanou, M., Westall, F., Israel, G., Agard, C., Baroukh, J., Donny, C., Gaboriaud, A., Guillemot, P., Lafaille, V., Lorigny, E., Paillet, A., Perez, R., Saccoccio, M., Yana, C., Armiens-Aparicio, C., Rodriguez, J. C., Blazquez, I. C., Gomez, F. G., Gomez-Elvira, J., Hettrich, S., Malvitte, A. L., Jimenez, M. M., Martinez-Frias, J., Martin-Soler, J., Martin-Torres, F. J., Jurado, A. M., Mora-Sotomayor, L., Caro, G. M., Lopez, S. N., Peinado-Gonzalez, V., Pla-Garcia, J., Manfredi, J. A. R., Romeral-Planello, J. J., Fuentes, S. A. S., Martinez, E. S., Redondo, J. T., Urqui-O'Callaghan, R., Mier, M.-P. Z., Chipera, S., Lacour, J.-L., Mauchien, P., Sirven, J.-B., Manning, H., Fairen, A., Hayes, A., Joseph, J., Sullivan, R., Thomas, P., Dupont, A., Lundberg, A., Melikechi, N., Mezzacappa, A., DeMarines, J., Grinspoon, D., Reitz, G., Prats, B., Atlaskin, E., Genzer, M., Harri, A.-M., Haukka, H., Kahanpaa, H., Kauhanen, J., Paton, M., Polkko, J., Schmidt, W., Siili, T., Fabre, C., Wilhelm, M. B., Poitrasson, F., Patel, K., Gorevan, S., Indyk, S., Paulsen, G., Gupta, S., Bish, D., Schieber, J., Gondet, B., Langevin, Y., Geffroy, C., Baratoux, D., Berger, G., Cros, A., d'Uston, C., Forni, O., Gasnault, O., Lasue, J., Lee, Q.-M., Maurice, S., Meslin, P.-Y., Pallier, E., Parot, Y., Pinet, P., Schroder, S., Toplis, M., Lewin, E., Brunner, W., Heydari, E., Achilles, C., Oehler, D., Coscia, D., Dromart, G., Robert, F., Sautter, V., Le Mouelic, S., Mangold, N., Nachon, M., Stalport, F., Francois, P., Raulin, F., Cameron, J., Clegg, S., Cousin, A., DeLapp, D., Dingler, R., Jackson, R. S., Johnstone, S., Lanza, N., Little, C., Nelson, T., Wiens, R. C., Williams, R. B., Jones, A., Kirkland, L., Treiman, A., Baker, B., Cantor, B., Caplinger, M., Davis, S., Duston, B., Edgett, K., Fay, D., Hardgrove, C., Harker, D., Herrera, P., Jensen, E., Kennedy, M. R., Krezoski, G., Krysak, D., Lipkaman, L., Malin, M., McCartney, E., McNair, S., Nixon, B., Posiolova, L., Ravine, M., Salamon, A., Saper, L., Stoiber, K., Supulver, K., Van Beek, J., Van Beek, T., Zimdar, R., French, K. L., Iagnemma, K., Goesmann, F., Goetz, W., Hviid, S., Johnson, M., Lefavor, M., Lyness, E., Breves, E., Dyar, M. D., Fassett, C., Blake, D. F., Bristow, T., DesMarais, D., Edwards, L., Haberle, R., Hoehler, T., Hollingsworth, J., Kahre, M., Keely, L., McKay, C., Bleacher, L., Brinckerhoff, W., Choi, D., Dworkin, J. P., Floyd, M., Garvin, J., Harpold, D., Martin, D. K., Pavlov, A., Raaen, E., Smith, M. D., Tan, F., Meyer, M., Posner, A., Voytek, M., Anderson, R. C., Aubrey, A., Beegle, L. W., Behar, A., Blaney, D., Brinza, D., Calef, F., Christensen, L., Crisp, J. A., DeFlores, L., Feldman, J., Feldman, S., Hurowitz, J., Jun, I., Keymeulen, D., Maki, J., Mischna, M., Morookian, J. M., Parker, T., Pavri, B., Schoppers, M., Sengstacken, A., Simmonds, J. J., Spanovich, N., Juarez, M. d. l. T., Vasavada, A. R., Yen, A., Cucinotta, F., Jones, J. H., Rampe, E., Nolan, T., Fisk, M., Radziemski, L., Barraclough, B., Bender, S., Berman, D., Dobrea, E. N., Tokar, R., Vaniman, D., Williams, R. M. E., Yingst, A., Lewis, K., Cleghorn, T., Huntress, W., Manhes, G., Hudgins, J., Olson, T., Stewart, N., Sarrazin, P., Grant, J., Vicenzi, E., Wilson, S. A., Bullock, M., Ehresmann, B., Hamilton, V., Hassler, D., Peterson, J., Rafkin, S., Zeitlin, C., Fedosov, F., Golovin, D., Karpushkina, N., Kozyrev, A., Litvak, M., Malakhov, A., Mitrofanov, I., Mokrousov, M., Nikiforov, S., Prokhorov, V., Sanin, A., Tretyakov, V., Varenikov, A., Vostrukhin, A., Kuzmin, R., Clark, B., Wolff, M., McLennan, S., Botta, O., Drake, D., Bean, K., Lemmon, M., Schwenzer, S. P., Anderson, R. B., Herkenhoff, K., Lee, E. M., Sucharski, R., Hernandez, M. A. d. P., Avalos, J. J. B., Ramos, M., Kim, M.-H., Malespin, C., Plante, I., Muller, J.-P., Ewing, R., Boynton, W., Downs, R., Fitzgibbon, M., Harshman, K., Morrison, S., Dietrich, W., Kortmann, O., Palucis, M., Williams, A., Lugmair, G., Wilson, M. A., Rubin, D., Jakosky, B., Balic-Zunic, T., Frydenvang, J., Jensen, J. K., Kinch, K., Koefoed, A., Madsen, M. B., Stipp, S. L. S., Boyd, N., Campbell, J. L., Gellert, R., Perrett, G., Pradler, I., VanBommel, S., Jacob, S., Rowland, S., Savijarvi, H., Boehm, E., Bottcher, S., Burmeister, S., Guo, J., Kohler, J., Garcia, C. M., Mueller-Mellin, R., Wimmer-Schweingruber, R., Bridges, J. C., McConnochie, T., Benna, M., Bower, H., Blau, H., Boucher, T., Carmosino, M., Elliott, H., Halleaux, D., Renno, N., Wong, M., Elliott, B., Spray, J., Thompson, L., Gordon, S., Newsom, H., Ollila, A., Williams, J., Vasconcelos, P., Bentz, J., Nealson, K., Popa, R., Kah, L. C., Moersch, J., Tate, C., Day, M., Kocurek, G., Hallet, B., Sletten, R., Francis, R., McCullough, E., Cloutis, E., ten Kate, I. L., Arvidson, R., Fraeman, A., Scholes, D., Slavney, S., Stein, T., Ward, J., Berger, J., Moores, J. E., Department of Earth and Environmental Sciences [Troy, NY], Rensselaer Polytechnic Institute (RPI), NASA Goddard Space Flight Center (GSFC), Jet Propulsion Laboratory (JPL), NASA-California Institute of Technology (CALTECH), PLANETO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA (UMR_7583)), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS), Astromaterials Research and Exploration Science (ARES), NASA Johnson Space Center (JSC), NASA-NASA, Department of Atmospheric, Oceanic, and Space Sciences [Ann Arbor] (AOSS), University of Michigan [Ann Arbor], University of Michigan System-University of Michigan System, Department of Astronomy [College Park], University of Maryland [College Park], University of Maryland System-University of Maryland System, Laboratoire de Génie des Procédés et Matériaux - EA 4038 (LGPM), CentraleSupélec, Center for Research and Exploration in Space Science and Technology [GSFC] (CRESST), Department of Earth, Atmospheric and Planetary Sciences [MIT, Cambridge] (EAPS), Massachusetts Institute of Technology (MIT), Laboratorio de Química de Plasmas y Estudios Planetarios [Mexico], Instituto de Ciencias Nucleares [Mexico], Universidad Nacional Autónoma de México = National Autonomous University of Mexico (UNAM)-Universidad Nacional Autónoma de México = National Autonomous University of Mexico (UNAM), Institute for Astronomy [Honolulu], University of Hawai‘i [Mānoa] (UHM), School of Physics and Astronomy [Minneapolis], University of Minnesota [Twin Cities] (UMN), University of Minnesota System-University of Minnesota System, Cornell University [New York], Geophysical Laboratory [Carnegie Institution], Carnegie Institution for Science, University of California [Davis] (UC Davis), University of California (UC), Jacobs Technology ESCG, Institut Pierre-Simon-Laplace (IPSL), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), School of Earth and Atmospheric Sciences [Atlanta], Georgia Institute of Technology [Atlanta], Division of Geological and Planetary Sciences [Pasadena], California Institute of Technology (CALTECH), NWO-NSO: The role of perchlorates in the preservation of organic compounds on Mars, Petrology, California Institute of Technology (CALTECH)-NASA, Universidad Nacional Autónoma de México (UNAM)-Universidad Nacional Autónoma de México (UNAM), Carnegie Institution for Science [Washington], University of California, École normale supérieure - Paris (ENS Paris), IMPEC - LATMOS, Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), University of Minnesota [Twin Cities], Cornell University, and École normale supérieure - Paris (ENS Paris)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National d'Études Spatiales [Toulouse] (CNES)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)
- Subjects
Martian ,Multidisciplinary ,010504 meteorology & atmospheric sciences ,[PHYS.ASTR.EP]Physics [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,Thermal decomposition ,Curiosity rover ,[SDU.ASTR.EP]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,chemistry.chemical_element ,Mars ,organic analysis ,Mars Exploration Program ,01 natural sciences ,Astrobiology ,chemistry.chemical_compound ,chemistry ,13. Climate action ,Isotopes of carbon ,Rocknest ,0103 physical sciences ,Sample Analysis at Mars ,Carbonate ,MSL Mars Volatiles Isotopes Organics Soil Gale Crater ,010303 astronomy & astrophysics ,Carbon ,0105 earth and related environmental sciences - Abstract
Samples from the Rocknest aeolian deposit were heated to ~835°C under helium flow and evolved gases analyzed by Curiosity’s Sample Analysis at Mars instrument suite. H 2 O, SO 2 , CO 2 , and O 2 were the major gases released. Water abundance (1.5 to 3 weight percent) and release temperature suggest that H 2 O is bound within an amorphous component of the sample. Decomposition of fine-grained Fe or Mg carbonate is the likely source of much of the evolved CO 2 . Evolved O 2 is coincident with the release of Cl, suggesting that oxygen is produced from thermal decomposition of an oxychloride compound. Elevated δD values are consistent with recent atmospheric exchange. Carbon isotopes indicate multiple carbon sources in the fines. Several simple organic compounds were detected, but they are not definitively martian in origin.
- Published
- 2013
- Full Text
- View/download PDF
44. Isotope ratios of H, C, and O in CO2 and H2O of the martian atmosphere
- Author
-
Chris R, Webster, Paul R, Mahaffy, Gregory J, Flesch, Paul B, Niles, John H, Jones, Laurie A, Leshin, Sushil K, Atreya, Jennifer C, Stern, Lance E, Christensen, Tobias, Owen, Heather, Franz, Robert O, Pepin, Andrew, Steele, Cherie, Achilles, Christophe, Agard, José Alexandre, Alves Verdasca, Robert, Anderson, Ryan, Anderson, Doug, Archer, Carlos, Armiens-Aparicio, Ray, Arvidson, Evgeny, Atlaskin, Andrew, Aubrey, Burt, Baker, Michael, Baker, Tonci, Balic-Zunic, David, Baratoux, Julien, Baroukh, Bruce, Barraclough, Keri, Bean, Luther, Beegle, Alberto, Behar, James, Bell, Steve, Bender, Mehdi, Benna, Jennifer, Bentz, Gilles, Berger, Jeff, Berger, Daniel, Berman, David, Bish, David F, Blake, Juan J, Blanco Avalos, Diana, Blaney, Jen, Blank, Hannah, Blau, Lora, Bleacher, Eckart, Boehm, Oliver, Botta, Stephan, Böttcher, Thomas, Boucher, Hannah, Bower, Nick, Boyd, Bill, Boynton, Elly, Breves, John, Bridges, Nathan, Bridges, William, Brinckerhoff, David, Brinza, Thomas, Bristow, Claude, Brunet, Anna, Brunner, Will, Brunner, Arnaud, Buch, Mark, Bullock, Sönke, Burmeister, Michel, Cabane, Fred, Calef, James, Cameron, John, Campbell, Bruce, Cantor, Michael, Caplinger, Javier, Caride Rodríguez, Marco, Carmosino, Isaías, Carrasco Blázquez, Antoine, Charpentier, Steve, Chipera, David, Choi, Benton, Clark, Sam, Clegg, Timothy, Cleghorn, Ed, Cloutis, George, Cody, Patrice, Coll, Pamela, Conrad, David, Coscia, Agnès, Cousin, David, Cremers, Joy, Crisp, Alain, Cros, Frank, Cucinotta, Claude, d'Uston, Scott, Davis, Mackenzie, Day, Manuel, de la Torre Juarez, Lauren, DeFlores, Dorothea, DeLapp, Julia, DeMarines, David, DesMarais, William, Dietrich, Robert, Dingler, Christophe, Donny, Bob, Downs, Darrell, Drake, Gilles, Dromart, Audrey, Dupont, Brian, Duston, Jason, Dworkin, M Darby, Dyar, Lauren, Edgar, Kenneth, Edgett, Christopher, Edwards, Laurence, Edwards, Bethany, Ehlmann, Bent, Ehresmann, Jen, Eigenbrode, Beverley, Elliott, Harvey, Elliott, Ryan, Ewing, Cécile, Fabre, Alberto, Fairén, Ken, Farley, Jack, Farmer, Caleb, Fassett, Laurent, Favot, Donald, Fay, Fedor, Fedosov, Jason, Feldman, Sabrina, Feldman, Marty, Fisk, Mike, Fitzgibbon, Melissa, Floyd, Lorenzo, Flückiger, Olivier, Forni, Abby, Fraeman, Raymond, Francis, Pascaline, François, Caroline, Freissinet, Katherine Louise, French, Jens, Frydenvang, Alain, Gaboriaud, Marc, Gailhanou, James, Garvin, Olivier, Gasnault, Claude, Geffroy, Ralf, Gellert, Maria, Genzer, Daniel, Glavin, Austin, Godber, Fred, Goesmann, Walter, Goetz, Dmitry, Golovin, Felipe, Gómez Gómez, Javier, Gómez-Elvira, Brigitte, Gondet, Suzanne, Gordon, Stephen, Gorevan, John, Grant, Jennifer, Griffes, David, Grinspoon, John, Grotzinger, Philippe, Guillemot, Jingnan, Guo, Sanjeev, Gupta, Scott, Guzewich, Robert, Haberle, Douglas, Halleaux, Bernard, Hallet, Vicky, Hamilton, Craig, Hardgrove, David, Harker, Daniel, Harpold, Ari-Matti, Harri, Karl, Harshman, Donald, Hassler, Harri, Haukka, Alex, Hayes, Ken, Herkenhoff, Paul, Herrera, Sebastian, Hettrich, Ezat, Heydari, Victoria, Hipkin, Tori, Hoehler, Jeff, Hollingsworth, Judy, Hudgins, Wesley, Huntress, Joel, Hurowitz, Stubbe, Hviid, Karl, Iagnemma, Steve, Indyk, Guy, Israël, Ryan, Jackson, Samantha, Jacob, Bruce, Jakosky, Elsa, Jensen, Jaqueline Kløvgaard, Jensen, Jeffrey, Johnson, Micah, Johnson, Steve, Johnstone, Andrea, Jones, Jonathan, Joseph, Insoo, Jun, Linda, Kah, Henrik, Kahanpää, Melinda, Kahre, Natalya, Karpushkina, Wayne, Kasprzak, Janne, Kauhanen, Leslie, Keely, Osku, Kemppinen, Didier, Keymeulen, Myung-Hee, Kim, Kjartan, Kinch, Penny, King, Laurel, Kirkland, Gary, Kocurek, Asmus, Koefoed, Jan, Köhler, Onno, Kortmann, Alexander, Kozyrev, Jill, Krezoski, Daniel, Krysak, Ruslan, Kuzmin, Jean Luc, Lacour, Vivian, Lafaille, Yves, Langevin, Nina, Lanza, Jeremie, Lasue, Stéphane, Le Mouélic, Ella Mae, Lee, Qiu-Mei, Lee, David, Lees, Matthew, Lefavor, Mark, Lemmon, Alain, Lepinette Malvitte, Richard, Léveillé, Éric, Lewin-Carpintier, Kevin, Lewis, Shuai, Li, Leslie, Lipkaman, Cynthia, Little, Maxim, Litvak, Eric, Lorigny, Guenter, Lugmair, Angela, Lundberg, Eric, Lyness, Morten, Madsen, Justin, Maki, Alexey, Malakhov, Charles, Malespin, Michael, Malin, Nicolas, Mangold, Gérard, Manhes, Heidi, Manning, Geneviève, Marchand, Mercedes, Marín Jiménez, César, Martín García, Dave, Martin, Mildred, Martin, Jesús, Martínez-Frías, Javier, Martín-Soler, F Javier, Martín-Torres, Patrick, Mauchien, Sylvestre, Maurice, Amy, McAdam, Elaina, McCartney, Timothy, McConnochie, Emily, McCullough, Ian, McEwan, Christopher, McKay, Scott, McLennan, Sean, McNair, Noureddine, Melikechi, Pierre-Yves, Meslin, Michael, Meyer, Alissa, Mezzacappa, Hayden, Miller, Kristen, Miller, Ralph, Milliken, Douglas, Ming, Michelle, Minitti, Michael, Mischna, Igor, Mitrofanov, Jeff, Moersch, Maxim, Mokrousov, Antonio, Molina Jurado, John, Moores, Luis, Mora-Sotomayor, John Michael, Morookian, Richard, Morris, Shaunna, Morrison, Reinhold, Mueller-Mellin, Jan-Peter, Muller, Guillermo, Muñoz Caro, Marion, Nachon, Sara, Navarro López, Rafael, Navarro-González, Kenneth, Nealson, Ara, Nefian, Tony, Nelson, Megan, Newcombe, Claire, Newman, Horton, Newsom, Sergey, Nikiforov, Brian, Nixon, Eldar, Noe Dobrea, Thomas, Nolan, Dorothy, Oehler, Ann, Ollila, Timothy, Olson, Miguel Ángel, de Pablo Hernández, Alexis, Paillet, Etienne, Pallier, Marisa, Palucis, Timothy, Parker, Yann, Parot, Kiran, Patel, Mark, Paton, Gale, Paulsen, Alex, Pavlov, Betina, Pavri, Verónica, Peinado-González, Laurent, Peret, Rene, Perez, Glynis, Perrett, Joe, Peterson, Cedric, Pilorget, Patrick, Pinet, Jorge, Pla-García, Ianik, Plante, Franck, Poitrasson, Jouni, Polkko, Radu, Popa, Liliya, Posiolova, Arik, Posner, Irina, Pradler, Benito, Prats, Vasily, Prokhorov, Sharon Wilson, Purdy, Eric, Raaen, Leon, Radziemski, Scot, Rafkin, Miguel, Ramos, Elizabeth, Rampe, François, Raulin, Michael, Ravine, Günther, Reitz, Nilton, Rennó, Melissa, Rice, Mark, Richardson, François, Robert, Kevin, Robertson, José Antonio, Rodriguez Manfredi, Julio J, Romeral-Planelló, Scott, Rowland, David, Rubin, Muriel, Saccoccio, Andrew, Salamon, Jennifer, Sandoval, Anton, Sanin, Sara Alejandra, Sans Fuentes, Lee, Saper, Philippe, Sarrazin, Violaine, Sautter, Hannu, Savijärvi, Juergen, Schieber, Mariek, Schmidt, Walter, Schmidt, Daniel, Scholes, Marcel, Schoppers, Susanne, Schröder, Susanne, Schwenzer, Eduardo, Sebastian Martinez, Aaron, Sengstacken, Ruslan, Shterts, Kirsten, Siebach, Tero, Siili, Jeff, Simmonds, Jean-Baptiste, Sirven, Susie, Slavney, Ronald, Sletten, Michael, Smith, Pablo, Sobrón Sánchez, Nicole, Spanovich, John, Spray, Steven, Squyres, Katie, Stack, Fabien, Stalport, Thomas, Stein, Noel, Stewart, Susan Louise Svane, Stipp, Kevin, Stoiber, Ed, Stolper, Bob, Sucharski, Rob, Sullivan, Roger, Summons, Dawn, Sumner, Vivian, Sun, Kimberley, Supulver, Brad, Sutter, Cyril, Szopa, Florence, Tan, Christopher, Tate, Samuel, Teinturier, Inge, ten Kate, Peter, Thomas, Lucy, Thompson, Robert, Tokar, Mike, Toplis, Josefina, Torres Redondo, Melissa, Trainer, Allan, Treiman, Vladislav, Tretyakov, Roser, Urqui-O'Callaghan, Jason, Van Beek, Tessa, Van Beek, Scott, VanBommel, David, Vaniman, Alexey, Varenikov, Ashwin, Vasavada, Paulo, Vasconcelos, Edward, Vicenzi, Andrey, Vostrukhin, Mary, Voytek, Meenakshi, Wadhwa, Jennifer, Ward, Eddie, Weigle, Danika, Wellington, Frances, Westall, Roger Craig, Wiens, Mary Beth, Wilhelm, Amy, Williams, Joshua, Williams, Rebecca, Williams, Richard B, Williams, Mike, Wilson, Robert, Wimmer-Schweingruber, Mike, Wolff, Mike, Wong, James, Wray, Megan, Wu, Charles, Yana, Albert, Yen, Aileen, Yingst, Cary, Zeitlin, Robert, Zimdar, and María-Paz, Zorzano Mier
- Subjects
Atmosphere ,Martian ,chemistry.chemical_compound ,Multidisciplinary ,Meteorite ,chemistry ,Stable isotope ratio ,Sample Analysis at Mars ,Carbonate ,Mars Exploration Program ,Atmosphere of Mars ,Astrobiology - Abstract
Mars' Atmosphere from Curiosity The Sample Analysis at Mars (SAM) instrument on the Curiosity rover that landed on Mars in August last year is designed to study the chemical and isotopic composition of the martian atmosphere. Mahaffy et al. (p. 263 ) present volume-mixing ratios of Mars' five major atmospheric constituents (CO 2 , Ar, N 2 , O 2 , and CO) and isotope measurements of 40 Ar/ 36 Ar and C and O in CO 2 , based on data from one of SAM's instruments, obtained between 31 August and 21 November 2012. Webster et al. (p. 260 ) used data from another of SAM's instruments obtained around the same period to determine isotope ratios of H, C, and O in atmospheric CO 2 and H 2 O. Agreement between the isotopic ratios measured by SAM with those of martian meteorites, measured in laboratories on Earth, confirms the origin of these meteorites and implies that the current atmospheric reservoirs of CO 2 and H 2 O were largely established after the period of early atmospheric loss some 4 billion years ago.
- Published
- 2013
45. Mars Science Laboratory
- Author
-
John P. Grotzinger, Ashwin R. Vasavada, and Christopher Russell
- Subjects
Martian surface ,Sample Analysis at Mars ,Mars landing ,Environmental science ,Mars Exploration Program ,Radiation assessment detector ,Mars Hand Lens Imager ,Exploration of Mars ,Remote sensing ,Astrobiology ,CRISM - Abstract
Mars Science Laboratory Mission and Science Investigation.- Collecting Samples in Gale Crater, Mars An Overview of the Mars Science Laboratory Sample Acquisition, Sample Processing and Handling System.- The Mars Science Laboratory Engineering Cameras.- The ChemCam Instrument Suite on the Mars Science Laboratory (MSL) Rover: Body Unit and Combined System Tests.- The ChemCam Instrument Suite on the Mars Science Laboratory (MSL) Rover: Science Objectives and Mast Unit Description.- Ceramic ChemCam Instrument Suite on the Mars Science Laboratory (MSL) Rover: Science Objectives and Mast Unit Description.- Ceramic ChemCam Calibration Targets on Mars Science Laboratory.- Curiosity's Mars Hand Lens Imager (MAHLI) Investigation.- Calibration of the Mars Science Laboratory Alpha Particle X-ray Spectrometer.- Characterization and Calibration of the CheMin Mineralogical Instrument on Mars Science Laboratory.- The Sample Analysis at Mars Investigation and Instrument Suite.- The Mars Science Laboratory Organic Check Material.- The Radiation Assessment Detector (RAD) Investigation.- Dynamic Albedo of Neutrons (DAN) Experiment Onboard NASA's Mars Science Laboratory.- REMS: The Environmental Sensor Suite for the Mars Science Laboratory Rover.- Selection of the Mars Science Laboratory Landing Site.- Surface Properties of the Mars Science Laboratory Candidate Landing Sites: Characterization from Orbit and Predictions.- Meter-Scale Slopes of Candidate MSL Landing Sites from Point Photoclinometry.- Assessment of Environments for Mars Science Laboratory Entry, Descent, and Surface Operations.- Empirical Estimates of Martian Surface Pressure in Support of the Landing of Mars Science Laboratory.
- Published
- 2013
- Full Text
- View/download PDF
46. The Sample Analysis at Mars Investigation and Instrument Suite
- Author
-
David Martin, Michel Cabane, Tobias Owen, John H. Jones, Ryan M. Miller, Greg Flesch, Florence Tan, James J. Wray, L. Bleacher, Didier Keymeulen, Cyril Szopa, E. Raaen, Douglas W. Ming, Paul R. Mahaffy, Robert A. Chalmers, Douglas L. Hawk, Curt Baffes, Laurie A. Leshin, Pamela G. Conrad, Oren E. Sheinman, Jennifer L. Eigenbrode, Robert Kline-Schoder, Paul Sorensen, D. Sheppard, Mark Cascia, Gregory Frazier, Daniel P. Glavin, Richard V. Morris, Arnaud Buch, Christopher P. McKay, Rafael Navarro-González, Charles Malespin, Patrice Coll, Rodger Farley, Christopher S. Johnson, Chris Webster, Cindy Gundersen, Bruce M. Jakosky, Daniel Carignan, Paula Everson, Heather B. Franz, Jason Feldman, Steve Woodward, Ray Garcia, Andrea Jones, Eric Lyness, Ken Arnett, Samuel Teinturier, Melissa G. Trainer, Mehdi Benna, Alexander A. Pavlov, E. Mumm, Steven W. Squyres, Marvin Noriega, James W. Kellogg, Jesse Lewis, Oliver Botta, David Coscia, H. L. K. Manning, John Maurer, Charles Edmonson, Steven Feng, Caroline Freissinet, Siamak Forouhar, Andrew Steele, Robert Arvey, Jason P. Dworkin, Douglas McLennan, Stephen Gorevan, Jennifer C. Stern, François Raulin, James Smith, Patrick R. Jordan, Sushil K. Atreya, Robert Sternberg, B. D. Prats, Therese Errigo, Bruce P. Block, T. Nolan, Michael Barciniak, D. N. Harpold, Vincent Holmes, William B. Brinckerhoff, Amy McAdam, Steve Battel, NASA Goddard Space Flight Center (GSFC), Jet Propulsion Laboratory (JPL), NASA-California Institute of Technology (CALTECH), PLANETO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA (UMR_7583)), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS), Department of Atmospheric, Oceanic, and Space Sciences [Ann Arbor] (AOSS), University of Michigan [Ann Arbor], University of Michigan System-University of Michigan System, NASA Johnson Space Center (JSC), NASA, AMU Engineering, Inc., Geophysical Laboratory [Carnegie Institution], Carnegie Institution for Science [Washington], School of Earth and Atmospheric Sciences [Atlanta], Georgia Institute of Technology [Atlanta], Swiss Space Office Bern (SSO), Department of Earth and Environmental Sciences [Troy, NY], Rensselaer Polytechnic Institute (RPI), Institute for Astronomy [Honolulu], University of Hawai‘i [Mānoa] (UHM), Battel Engineering, Inc., Laboratory for Atmospheric and Space Physics [Boulder] (LASP), University of Colorado [Boulder], Concordia College, Moorhead, Department of Astronomy [Ithaca], Cornell University [New York], Laboratorio de Química de Plasmas y Estudios Planetarios [Mexico], Instituto de Ciencias Nucleares [Mexico], Universidad Nacional Autónoma de México (UNAM)-Universidad Nacional Autónoma de México (UNAM), NASA Ames Research Center (ARC), Ecole Centrale Paris, Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Space Physics Research Laboratory [Ann Arbor] (SPRL), IMPEC - LATMOS, Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Cornell University, Carnegie Institution for Science, Universidad Nacional Autónoma de México = National Autonomous University of Mexico (UNAM)-Universidad Nacional Autónoma de México = National Autonomous University of Mexico (UNAM), NASA Goddard Space Flight Center ( GSFC ), Jet Propulsion Laboratory ( JPL ), NASA-California Institute of Technology ( CALTECH ), Laboratoire Atmosphères, Milieux, Observations Spatiales ( LATMOS ), Université de Versailles Saint-Quentin-en-Yvelines ( UVSQ ) -Université Pierre et Marie Curie - Paris 6 ( UPMC ) -Institut national des sciences de l'Univers ( INSU - CNRS ) -Centre National de la Recherche Scientifique ( CNRS ) -Université de Versailles Saint-Quentin-en-Yvelines ( UVSQ ) -Université Pierre et Marie Curie - Paris 6 ( UPMC ) -Institut national des sciences de l'Univers ( INSU - CNRS ) -Centre National de la Recherche Scientifique ( CNRS ), Laboratoire inter-universitaire des systèmes atmosphèriques ( LISA ), Centre National de la Recherche Scientifique ( CNRS ) -Université Paris-Est Créteil Val-de-Marne - Paris 12 ( UPEC UP12 ) -Université Paris Diderot - Paris 7 ( UPD7 ) -Institut national des sciences de l'Univers ( INSU - CNRS ), Department of Atmospheric, Oceanic, and Space Sciences [Ann Arbor] ( AOSS ), NASA Johnson Space Center ( JSC ), Swiss Space Office Bern ( SSO ), Department of Earth and Environmental Sciences [Troy], Rensselaer Polytechnic Institute ( RPI ), University of Hawaii at Manoa ( UHM ), Laboratory for Atmospheric and Space Physics [Boulder] ( LASP ), University of Colorado Boulder [Boulder], Universidad Nacional Autónoma de México ( UNAM ) -Universidad Nacional Autónoma de México ( UNAM ), NASA Ames Research Center ( ARC ), Université de Versailles Saint-Quentin-en-Yvelines ( UVSQ ) -Université Pierre et Marie Curie - Paris 6 ( UPMC ) -Institut national des sciences de l'Univers ( INSU - CNRS ) -Centre National de la Recherche Scientifique ( CNRS ), and Space Physics Research Laboratory [Ann Arbor] ( SPRL )
- Subjects
Volatiles ,[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] ,010504 meteorology & atmospheric sciences ,Gas chromatography mass spectrometry ,[PHYS.ASTR.EP]Physics [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,Habitability ,[SDU.ASTR.EP]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,Mars ,Life on Mars ,01 natural sciences ,Astrobiology ,Laboratory ,Atmosphere ,Isotopes ,0103 physical sciences ,Organic compounds ,010303 astronomy & astrophysics ,Quadrupole mass analyzer ,0105 earth and related environmental sciences ,Spectrometer ,[ SDU.ASTR.IM ] Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] ,Astronomy and Astrophysics ,Mars Exploration Program ,Curiosity Rover ,Gale crater ,[ SDU.ASTR.EP ] Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,Noble gases ,[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] ,[ PHYS.ASTR.EP ] Physics [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,13. Climate action ,Space and Planetary Science ,Rocknest ,Sample Analysis at Mars ,Measuring instrument ,Environmental science ,Evolved gas analysis ,[ PHYS.ASTR.IM ] Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] - Abstract
International audience; The Sample Analysis at Mars (SAM) investigation of the Mars Science Laboratory (MSL) addresses the chemical and isotopic composition of the atmosphere and volatiles extracted from solid samples. The SAM investigation is designed to contribute substantially to the mission goal of quantitatively assessing the habitability of Mars as an essential step in the search for past or present life on Mars. SAM is a 40 kg instrument suite located in the interior of MSL's Curiosity rover. The SAM instruments are a quadrupole mass spectrometer, a tunable laser spectrometer, and a 6-column gas chromatograph all coupled through solid and gas processing systems to provide complementary information on the same samples. The SAM suite is able to measure a suite of light isotopes and to analyze volatiles directly from the atmosphere or thermally released from solid samples. In addition to measurements of simple inorganic compounds and noble gases SAM will conduct a sensitive search for organic compounds with either thermal or chemical extraction from sieved samples delivered by the sample processing system on the Curiosity rover's robotic arm.
- Published
- 2012
- Full Text
- View/download PDF
47. Play it again, SAM
- Author
-
Kevin Zahnle
- Subjects
Multidisciplinary ,Spectrometer ,Sample Analysis at Mars ,Gale crater ,Mars Exploration Program ,Curiosity rover ,Billion years ,Geology ,Astrobiology - Abstract
Lasers shine new light on the drying of Mars while reviving the mystery of methane [Also see Reports by Mahaffy et al. and Webster et al. ]
- Published
- 2015
- Full Text
- View/download PDF
48. Atmospheric origins of perchlorate on Mars and in the Atacama
- Author
-
Michael H. Hecht, Kevin Zahnle, David C. Catling, Samuel P. Kounaves, B. C. Clark, Mark Claire, Richard C. Quinn, University of St Andrews. Earth and Environmental Sciences, and University of St Andrews. St Andrews Isotope Geochemistry
- Subjects
Atmospheres ,Atmospheric Science ,Ozone ,Soil Science ,Mineralogy ,chemistry.chemical_element ,Aquatic Science ,Oceanography ,Astrobiology ,Gas phase ,chemistry.chemical_compound ,Perchlorate ,Geochemistry and Petrology ,Earth and Planetary Sciences (miscellaneous) ,Chlorine ,Planetary geochemistry ,Perchloric acid ,Earth-Surface Processes ,Water Science and Technology ,Martian ,GB ,Ecology ,Paleontology ,Forestry ,Mars Exploration Program ,Geophysics ,chemistry ,Space and Planetary Science ,GB Physical geography ,Sample Analysis at Mars ,Environmental science - Abstract
Times Cited: 22 Isotopic studies indicate that natural perchlorate is produced on Earth in arid environments by the oxidation of chlorine species through pathways involving ozone or its photochemical products. With this analogy, we propose that the arid environment on Mars may have given rise to perchlorate through the action of atmospheric oxidants. A variety of hypothetical pathways can be proposed including photochemical reactions, electrostatic discharge, and gas-solid reactions. Because perchlorate-rich deposits in the Atacama desert are closest in abundance to perchlorate measured at NASA's Phoenix Lander site, we made a preliminary study of the means to produce Atacama perchlorate to help shed light on the origin of Martian perchlorate. We investigated gas phase pathways using a 1-D photochemical model. We found that perchlorate can be produced in sufficient quantities to explain the abundance of perchlorate in the Atacama from a proposed gas phase oxidation of chlorine volatiles to perchloric acid. The feasibility of gas phase production for the Atacama provides justification for future investigations of gas phase photochemistry as a possible source for Martian perchlorate. Publisher PDF
- Published
- 2010
- Full Text
- View/download PDF
49. Strong release of methane on Mars in northern summer 2003
- Author
-
Robert E. Novak, Tilak Hewagama, Michael A. DiSanti, Michael D. Smith, Avi Mandell, Michael J. Mumma, Geronimo L. Villanueva, and Boncho P. Bonev
- Subjects
Multidisciplinary ,Extraterrestrial Environment ,Atmospheric methane ,Spectrum Analysis ,Mars ,Mars Exploration Program ,Atmospheric sciences ,Methane ,Astrobiology ,Plume ,chemistry.chemical_compound ,Petroleum seep ,Steam ,chemistry ,Sample Analysis at Mars ,Environmental science ,Seasons ,Longitude ,Water vapor - Abstract
Living systems produce more than 90% of Earth's atmospheric methane; the balance is of geochemical origin. On Mars, methane could be a signature of either origin. Using high-dispersion infrared spectrometers at three ground-based telescopes, we measured methane and water vapor simultaneously on Mars over several longitude intervals in northern early and late summer in 2003 and near the vernal equinox in 2006. When present, methane occurred in extended plumes, and the maxima of latitudinal profiles imply that the methane was released from discrete regions. In northern midsummer, the principal plume contained ∼19,000 metric tons of methane, and the estimated source strength (≥0.6 kilogram per second) was comparable to that of the massive hydrocarbon seep at Coal Oil Point in Santa Barbara, California.
- Published
- 2009
50. Mitigation of the impact of terrestrial contamination on organic measurements from the Mars Science Laboratory
- Author
-
Therese Errigo, Pamela G. Conrad, John Canham, Ira Katz, Paul R. Mahaffy, and Inge Loes ten Kate
- Subjects
Geologic Sediments ,Spectrometer ,Atmosphere ,Polymers ,Mars ,Mars Exploration Program ,Biological potential ,Contamination ,Containment of Biohazards ,Exploration of Mars ,Agricultural and Biological Sciences (miscellaneous) ,Gas Chromatography-Mass Spectrometry ,Astrobiology ,Organic molecules ,Space and Planetary Science ,Sample Analysis at Mars ,Environmental science ,Organic Chemicals ,Volatilization ,Laboratories ,Remote sensing - Abstract
The objective of the 2009 Mars Science Laboratory (MSL), which is planned to follow the Mars Exploration Rovers and the Phoenix lander to the surface of Mars, is to explore and assess quantitatively a site on Mars as a potential habitat for present or past life. Specific goals include an assessment of the past or present biological potential of the target environment and a characterization of its geology and geochemistry. Included in the 10 investigations of the MSL rover is the Sample Analysis at Mars (SAM) instrument suite, which is designed to obtain trace organic measurements, measure water and other volatiles, and measure several light isotopes with experiment sequences designed for both atmospheric and solid-phase samples. SAM integrates a gas chromatograph, a mass spectrometer, and a tunable laser spectrometer supported by sample manipulation tools both within and external to the suite. The sub-part-per-billion sensitivity of the suite for trace species, particularly organic molecules, along with a mobile platform that will contain many kilograms of organic materials, presents a considerable challenge due to the potential for terrestrial contamination to mask the signal of martian organics. We describe the effort presently underway to understand and mitigate, wherever possible within the resource constraints of the mission, terrestrial contamination in MSL and SAM measurements.
- Published
- 2008
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.