1. Rheological Properties of Composite Inorganic Micropowder Asphalt Mastic.
- Author
-
Guo, Tengteng, Chen, Haijun, Tang, Deqing, Ding, Shengquan, Wang, Chaohui, Wang, Decai, Chen, Yuanzhao, and Li, Zhenxia
- Subjects
ASPHALT ,RHEOLOGY ,FOURIER transform infrared spectroscopy ,MODULUS of rigidity - Abstract
Graphene Tourmaline Composite Micropowder (hereinafter referred to as GTCM) modified asphalt was prepared by the ball milling method. The effects of different temperatures and different frequencies on the high-temperature performance of composite-modified asphalt were evaluated by dynamic shear rheological test, and the viscoelastic properties of composite-modified asphalt under different stresses and different temperatures were analyzed. The low-temperature rheological properties of GTCM-modified asphalt were analyzed by bending beam rheological test, and its mechanism was analyzed by Fourier transform infrared spectroscopy (FTIR) test. The results show that the temperature sensitivity and anti-aging resistance of GTCM-modified asphalt are significantly higher than that of tourmaline-modified asphalt. The improvement effect gradually increases with the increase in graphene powder content, and its addition does not change the viscoelastic properties of asphalt. The complex shear modulus and phase angle of GTCM-modified asphalt at appropriate temperatures are more conducive to tourmaline-modified asphalt and matrix asphalt, which can improve the rutting resistance of asphalt. In the same type, with the increase in composite modified micropowder content, the rutting resistance of modified asphalt is better. The improvement of rutting resistance of GTCM-0.5, GTCM-1.0 and GTCM-1.5-modified asphalt can reach 12.95%, 10.12% and 24.25%, respectively; the improvement range is more complicated due to temperature and frequency changes. The GTCM-modified asphalt has good low-temperature crack resistance. The creep stiffness modulus of GTCM-modified asphalt decreases with the increase in load time under different types and dosages, and its stiffness modulus is smaller than that of tourmaline-modified asphalt and mineral powder asphalt mastic. The creep rate increases with the extension of load time, which is greater than that of tourmaline-modified asphalt and mineral powder asphalt mastic. When the load was 60 s, the creep stiffness modulus of GTCM-0.5, GTCM-1.0 and GTCM-1.5-modified asphalt decreased by 5.75%, 6.97% and 13.73%, respectively, and the creep rate increased by 1.37%, 2.52% and 4.35%, respectively. After adding GTCM or tourmaline to the matrix asphalt, no new functional groups were produced due to the chemical reaction with the asphalt. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF