1. Comparison of multispectral modeling of physiochemical attributes of greengage: Brix and pH values
- Author
-
Xiwei Wang, Maocheng Zhao, Xiaoyang Xing, and Junrong Yang
- Subjects
Multispectral image ,modified Adaboost ,Feature selection ,RT ,extreme learning machine ,Genetic algorithm ,Partial least squares regression ,Feature (machine learning) ,T1-995 ,TX341-641 ,Brix ,Technology (General) ,Mathematics ,Extreme learning machine ,business.industry ,Nutrition. Foods and food supply ,pH ,Dimensionality reduction ,Hyperspectral imaging ,Pattern recognition ,supervised feature wavelength selection ,Artificial intelligence ,business ,greengage ,Food Science ,Biotechnology ,multispectral modeling - Abstract
Chemometric modeling concerns both accuracy and computational expense for the prediction of quality-indicating attributes of food materials. Modeling approaches were explored with the hyperspectral images with pH and Brix values of greengages. A two-phase architecture was applied for modeling. Firstly, waveband selection was performed using two approaches, i.e., succession projection algorithm (SPA) and its combination with genetic algorithm (SPA+GA). Secondly, multispectral models based on the two feature sets of wavebands were built via a total of six different modeling methods, i.e., partial least squares regression (PLSR) and extreme learning machine (ELM) in their respective stand-alone versions, their applications combined with genetic algorithm (GA), and their ensemble enhancements with modified Adaboost.RT (MAdaboost.RT). Analysis of accuracy and computational expense showed that supervised feature selection with SPA+GA was superior to unsupervised SPA for better modeling accuracy. MAdaboost.RT-ELM showed high accuracy at low computational expense. ELM models were the better base models than the PLSR ones, for being more randomized and diverse. It indicates that MAdaboost.RT-ELM on SPA is the best choice for a quick test on a newly available dataset, while switching the dimensionality reduction from SPA to SPA+GA may yield more accurate models with added, but well worthy, computational expense.
- Published
- 2021