1. A Kinematic Approach to Determining the Optimal Actuator Sensor Architecture for Space Robots
- Author
-
Peggy Boning, Steven Dubowsky, Massachusetts Institute of Technology. Department of Mechanical Engineering, Dubowsky, Steven, and Boning, Peggy
- Subjects
Engineering ,Spacecraft ,business.industry ,Applied Mathematics ,Mechanical Engineering ,ComputerApplications_COMPUTERSINOTHERSYSTEMS ,Control engineering ,Kinematics ,Reaction wheel ,Robotic spacecraft ,Computer Science::Robotics ,Artificial Intelligence ,Control theory ,Modeling and Simulation ,Control system ,Physics::Space Physics ,Torque ,Robot ,ComputerSystemsOrganization_SPECIAL-PURPOSEANDAPPLICATION-BASEDSYSTEMS ,Electrical and Electronic Engineering ,business ,Actuator ,Software - Abstract
Autonomous space robots will be required for such future missions as the construction of large space structures and repairing disabled satellites. These robots will need to be precisely controlled. However, factors such as manipulator joint/actuator friction and spacecraft attitude control thruster inaccuracies can substantially degrade control system performance. Sensor-based control algorithms can be used to mitigate the effects of actuator error, but sensors can add substantially to a space system’s weight, complexity, and cost, and reduce its reliability. Here, a method is presented to determine the sensor architecture that uses the minimum number of sensors that can simultaneously compensate for errors and disturbance in a space robot’s manipulator joint actuators, spacecraft thrusters, and reaction wheels. The placement and minimal number of sensors is determined by analytically structuring the system into “canonical chains” that consist of the manipulator links and spacecraft with force/torque sensors placed between the space robot’s spacecraft and its manipulators. These chains are combined to determine the number of sensors needed for the entire system. Examples of one- and two-manipulator space robots are studied and the results are validated by simulation.
- Published
- 2010