1. Buffer Influence on the Amino Acid Silica Interaction
- Author
-
Saientan Bag, Sebastian P. Schwaminger, Wolfgang Wenzel, Sonja Berensmeier, Stefan Rauwolf, and Mikhail Suyetin
- Subjects
Tris ,Technology ,multiscale modelling of adsorption ,Lysine ,02 engineering and technology ,010402 general chemistry ,01 natural sciences ,Article ,chemistry.chemical_compound ,Molecular dynamics ,symbols.namesake ,Computational chemistry ,Hydroxymethyl ,Physical and Theoretical Chemistry ,chemistry.chemical_classification ,amino acids ,Langmuir adsorption model ,Articles ,021001 nanoscience & nanotechnology ,Atomic and Molecular Physics, and Optics ,0104 chemical sciences ,Amino acid ,MOPS ,ddc ,chemistry ,silica ,symbols ,chromatography ,buffer ,0210 nano-technology ,ddc:600 ,Biosensor - Abstract
Protein‐surface interactions are exploited in various processes in life sciences and biotechnology. Many of such processes are performed in presence of a buffer system, which is generally believed to have an influence on the protein‐surface interaction but is rarely investigated systematically. Combining experimental and theoretical methodologies, we herein demonstrate the strong influence of the buffer type on protein‐surface interactions. Using state of the art chromatographic experiments, we measure the interaction between individual amino acids and silica, as a reference to understand protein‐surface interactions. Among all the 20 proteinogenic amino acids studied, we found that arginine (R) and lysine (K) bind most strongly to silica, a finding validated by free energy calculations. We further measured the binding of R and K at different pH in presence of two different buffers, MOPS (3‐(N‐morpholino)propanesulfonic acid) and TRIS (tris(hydroxymethyl)aminomethane), and find dramatically different behavior. In presence of TRIS, the binding affinity of R/K increases with pH, whereas we observe an opposite trend for MOPS. These results can be understood using a multiscale modelling framework combining molecular dynamics simulation and Langmuir adsorption model. The modelling approach helps to optimize buffer conditions in various fields like biosensors, drug delivery or bio separation engineering prior to the experiment., How do buffers affect protein surface interactions? Experimental zonal elution chromatography helps to identify interactions of silica surfaces with amino acids. These interactions can be comprehended with a multiscale modelling framework combining molecular dynamics simulation and different flavors of the classical Langmuir adsorption model.
- Published
- 2020