1. Mechanical Properties of a 3 Dimensional-Printed Transparent Flexible Resin Used for Vascular Model Simulation Compared with Those of Porcine Arteries.
- Author
-
Morita R, Nonoyama T, Abo D, Soyama T, Fujima N, Imai T, Hamaguchi H, Kameda T, Sugita O, Takahashi B, Kinota N, and Kudo K
- Subjects
- Humans, Swine, Animals, Surface Properties, Silicones, Materials Testing, Tensile Strength, Light, Arteries
- Abstract
Purpose: To develop a vascular intervention simulation model that replicates the characteristics of a human patient and to compare the mechanical properties of a 3-dimensional (3D)-printed transparent flexible resin with those of porcine arteries using the elastic modulus (E) and kinetic friction coefficient (μ
k )., Materials and Methods: Resin plates were created from a transparent flexible resin using a 3D printer. Porcine artery plates were prepared by excising the aorta. E values and the adhesive strengths of the resin and arterial surfaces toward a polyethylene plate, were measured with a tensile-compressive mechanical tester. Resin transparency was measured using an ultraviolet-visible light spectrometer. The μk value of the resin plate surface after applying silicone spray for 1-5 seconds and that of the artery were measured using a translational friction tester., Results: E values differed significantly between the arteries and resin plates at each curing time (0.20 MPa ± 0.04 vs 8.53 MPa ± 2.37 for a curing time of 1 minute; P < .05). The resin was stiffer than the arteries, regardless of the curing times. The visible light transmittance and adhesive strength of the resin decreased as the curing time increased. The adhesive strength of the artery was the lowest. The μk value of the silicone-coated resin surface created by applying silicone for 2-3 seconds (thickness of the silicone layer, 1.6-2.0 μm) was comparable with that of the artery, indicating that the coating imparted a similar slippage to the resin as to the living artery., Conclusions: A transparent flexible resin is useful for creating a transparent and slippery vascular model for vascular intervention simulation., (Copyright © 2023 SIR. Published by Elsevier Inc. All rights reserved.)- Published
- 2023
- Full Text
- View/download PDF