1. Biochemical Insights into a Novel Family 2 Glycoside Hydrolase with Both β-1,3-Galactosidase and β-1,4-Galactosidase Activity from the Arctic.
- Author
-
Li, Dianyi, Wang, Zheng, Yu, Yong, Li, Huirong, Luo, Wei, Chen, Bo, Niu, Guoqing, and Ding, Haitao
- Abstract
A novel GH2 (glycoside hydrolase family 2) β-galactosidase from Marinomonas sp. BSi20584 was successfully expressed in E. coli with a stable soluble form. The recombinant enzyme (rMaBGA) was purified to electrophoretic homogeneity and characterized extensively. The specific activity of purified rMaBGA was determined as 96.827 U mg
−1 at 30 °C using ONPG (o-nitrophenyl-β-D-galactopyranoside) as a substrate. The optimum pH and temperature of rMaBGA was measured as 7.0 and 50 °C, respectively. The activity of rMaBGA was significantly enhanced by some divalent cations including Zn2+ , Mg2+ and Ni2+ , but inhibited by EDTA, suggesting that some divalent cations might play important roles in the catalytic process of rMaBGA. Although the enzyme was derived from a cold-adapted strain, it still showed considerable stability against various physical and chemical elements. Moreover, rMaBGA exhibited activity both toward Galβ-(1,3)-GlcNAc and Galβ-(1,4)-GlcNAc, which is a relatively rare occurrence in GH2 β-galactosidase. The results showed that two domains in the C-terminal region might be contributed to the β-1,3-galactosidase activity of rMaBGA. On account of its fine features, this enzyme is a promising candidate for the industrial application of β-galactosidase. [ABSTRACT FROM AUTHOR]- Published
- 2023
- Full Text
- View/download PDF