7 results on '"Henry, Gregory H. R."'
Search Results
2. Tundra Trait Team:A database of plant traits spanning the tundra biome
- Author
-
Bjorkman, Anne D., Myers-Smith, Isla H., Elmendorf, Sarah C., Normand, Signe, Thomas, Haydn J. D., Alatalo, Juha M., Alexander, Heather, Anadon-Rosell, Alba, Angers-Blondin, Sandra, Bai, Yang, Baruah, Gaurav, te Beest, Mariska, Berner, Logan, Bjork, Robert G., Blok, Daan, Bruelheide, Helge, Buchwal, Agata, Buras, Allan, Carbognani, Michele, Christie, Katherine, Collier, Laura S., Cooper, Elisabeth J., Cornelissen, J. Hans C., Dickinson, Katharine J. M., Dullinger, Stefan, Elberling, Bo, Eskelinen, Anu, Forbes, Bruce C., Frei, Esther R., Iturrate-Garcia, Maitane, Good, Megan K., Grau, Oriol, Green, Peter, Greve, Michelle, Grogan, Paul, Haider, Sylvia, Hajek, Tomas, Hallinger, Martin, Happonen, Konsta, Harper, Karen A., Heijmans, Monique M. P. D., Henry, Gregory H. R., Hermanutz, Luise, Hewitt, Rebecca E., Hollister, Robert D., Hudson, James, Huelber, Karl, Iversen, Colleen M., Jaroszynska, Francesca, Jimenez-Alfaro, Borja, Johnstone, Jill, Jorgensen, Rasmus Halfdan, Kaarlejarvi, Elina, Klady, Rebecca, Klimesova, Jitka, Korsten, Annika, Kuleza, Sara, Kulonen, Aino, Lamarque, Laurent J., Lantz, Trevor, Lavalle, Amanda, Lembrechts, Jonas J., Levesque, Esther, Little, Chelsea J., Luoto, Miska, Macek, Petr, Mack, Michelle C., Mathakutha, Rabia, Michelsen, Anders, Milbau, Ann, Molau, Ulf, Morgan, John W., Morsdorf, Martin Alfons, Nabe-Nielsen, Jacob, Nielsen, Sigrid Scholer, Ninot, Josep M., Oberbauer, Steven F., Olofsson, Johan, Onipchenko, Vladimir G., Petraglia, Alessandro, Pickering, Catherine, Prevey, Janet S., Rixen, Christian, Rumpf, Sabine B., Schaepman-Strub, Gabriela, Semenchuk, Philipp, Shetti, Rohan, Soudzilovskaia, Nadejda A., Spasojevic, Marko J., Speed, James David Mervyn, Street, Lorna E., Suding, Katharine, Tape, Ken D., Tomaselli, Marcello, Trant, Andrew, Treier, Urs A., Tremblay, Jean-Pierre, Tremblay, Maxime, Venn, Susanna, Virkkala, Anna-Maria, Vowles, Tage, Weijers, Stef, Wilmking, Martin, Wipf, Sonja, Zamin, Tara, Systems Ecology, Spatial Ecology and Global Change, and Environmental Sciences
- Subjects
Ekologi ,Chemistry ,Arctic ,plant functional traits ,tundra ,Ecology ,Economics ,Ecological Applications ,alpine ,VDP::Mathematics and natural science: 400::Zoology and botany: 480::Marine biology: 497 ,VDP::Matematikk og Naturvitenskap: 400::Zoologiske og botaniske fag: 480::Marinbiologi: 497 ,Biology - Abstract
Motivation: The Tundra Trait Team (TTT) database includes field-based measurements of key traits related to plant form and function at multiple sites across the tundra biome. This dataset can be used to address theoretical questions about plant strategy and trade-offs, trait environment relationships and environmental filtering, and trait variation across spatial scales, to validate satellite data, and to inform Earth system model parameters. Main types of variable contained: The database contains 91,970 measurements of 18 plant traits. The most frequently measured traits (>1,000 observations each) include plant height, leaf area, specific leaf area, leaf fresh and dry mass, leaf dry matter content, leaf nitrogen, carbon and phosphorus content, leaf C:N and N:P, seed mass, and stem specific density. Spatial location and grain: Measurements were collected in tundra habitats in both the Northern and Southern Hemispheres, including Arctic sites in Alaska, Canada, Greenland, Fennoscandia and Siberia, alpine sites in the European Alps, Colorado Rockies, Caucasus, Ural Mountains, Pyrenees, Australian Alps, and Central Otago Mountains (New Zealand), and sub-Antarctic Marion Island. More than 99% of observations are georeferenced. Time period and grain: All data were collected between 1964 and 2018. A small number of sites have repeated trait measurements at two or more time periods. Major taxa and level of measurement: Trait measurements were made on 978 terrestrial vascular plant species growing in tundra habitats. Most observations are on individuals (86%), while the remainder represent plot or site means or maximums per species. Software format: csv file and GitHub repository with data cleaning scripts in R; contribution to TRY plant trait database (www.try-db.org) to be included in the next version release. 2Ecoinformatics and Biodiversity, Department of Bioscience, Aarhus University, Aarhus, Denmark 3Senckenberg Gesellschaft fD?r Naturforschung, Biodiversity and Climate Research Centre (BiK?F), Frankfurt, Germany 4Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado 5National Ecological Observatory Network, Boulder, Colorado 6Institute of Arctic and Alpine Research, University of Colorado, Boulder, Colorado 7Arctic Research Center, Department of Bioscience, Aarhus University, Aarhus, Denmark 8Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Bioscience, Aarhus University, Aarhus, Denmark 9Department of Biological and Environmental Sciences, Qatar University, Doha, Qatar 10Department of Forestry, Forest and Wildlife Research Center, Mississippi State University, Mississippi 11Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain 12Biodiversity Research Institute, University of Barcelona, Barcelona, Spain 13Institute of Botany and Landscape Ecology, Greifswald University, Greifswald, Germany 14Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Xishuangbanna, China 15Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland 16Department of Ecology and Environmental Science, Ume� University, Ume�, Sweden 17Environmental Sciences, Copernicus Institute of Sustainable Development, Utrecht University, Utrecht, The Netherlands 18School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, Arizona 19Department of Earth Sciences, University of Gothenburg, Gothenburg, Sweden 20Gothenburg Global Biodiversity Centre, GD?teborg, Sweden 21Department of Physical Geography and Ecosystem Science, Lund University, Lund, Sweden 22Martin Luther University Halle?Wittenberg, Institute of Biology / Geobotany and Botanical Garden, Halle (Saale), Germany 23German Centre for Integrative Biodiversity Research (iDiv) Halle?Jena?Leipzig, Leipzig, Germany 24Adam Mickiewicz University, Institute of Geoecology and Geoinformation, Poznan, Poland 25University of Alaska Anchorage, Department of Biological Sciences, Anchorage, Alaska 26Technische Universit�t MD?nchen, Freising, Germany 27Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy 28The Alaska Department of Fish and Game, Anchorage, Alaska 29Department of Biology, Memorial University, St. John�s, Newfoundland and Labrador, Canada 30Department of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and Economics, UiT? The Arctic University of Norway, Troms�, Norway 31Systems Ecology, Department of Ecological Science, Vrije Universiteit, Amsterdam, The Netherlands 32Department of Botany, University of Otago, Dunedin, New Zealand 33Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria 34Center for Permafrost (CENPERM), Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark 35Department of Physiological Diversity, Helmholtz Centre for Environmental Research ? UFZ, Leipzig, Germany 36Department of Ecology and Genetics, University of Oulu, Oulu, Finland 37Arctic Centre, University of Lapland, Rovaniemi, Finland 38Swiss Federal Research Institute WSL, Birmensdorf, Switzerland 39Department of Geography, University of British Columbia, Vancouver, British Columbia, Canada 40Faculty of Science and Technology, Federation University, Ballarat, Victoria, Australia 41Global Ecology Unit, CREAF?CSIC?UAB, Bellaterra, Catalonia, Spain 42CREAF, Bellaterra, Cerdanyola del Vall�s, Catalonia, Spain 43Department of Ecology, Environment and Evolution, La Trobe University, Bundoora, Australia 44Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa 45Department of Biology, Queen�s University, Kingston, Ontario, Canada Scopus
- Published
- 2018
- Full Text
- View/download PDF
3. Tundra Trait Team: A database of plant traits spanning the tundra biome
- Author
-
Bjorkman, Anne D., Myers-Smith, Isla H., Elmendorf, Sarah C., Normand, Signe, Thomas, Haydn J. D., Alatalo, Juha M., Alexander, Heather, Anadon-Rosell, Alba, Angers-Blondin, Sandra, Bai, Yang, Baruah, Gaurav, te Beest, Mariska, Berner, Logan, Björk, Robert G., Blok, Daan, Bruelheide, Helge, Buchwal, Agata, Buras, Allan, Carbognani, Michele, Christie, Katherine, Collier, Laura S., Cooper, Elisabeth J., Cornelissen, J. Hans C., Dickinson, Katharine J. M., Dullinger, Stefan, Elberling, Bo, Eskelinen, Anu, Forbes, Bruce C., Frei, Esther R., Iturrate-Garcia, Maitane, Good, Megan K., Grau, Oriol, Green, Peter, Greve, Michelle, Grogan, Paul, Haider, Sylvia, Hájek, Tomáš, Hallinger, Martin, Happonen, Konsta, Harper, Karen A., Heijmans, Monique M. P. D., Henry, Gregory H. R., Hermanutz, Luise, Hewitt, Rebecca E., Hollister, Robert D., Hudson, James, Hülber, Karl, Iversen, Colleen M., Jaroszynska, Francesca, Jiménez-Alfaro, Borja, Johnstone, Jill, Jorgensen, Rasmus Halfdan, Kaarlejärvi, Elina, Klady, Rebecca, Klimešová, Jitka, Korsten, Annika, Kuleza, Sara, Kulonen, Aino, Lamarque, Laurent J., Lantz, Trevor, Lavalle, Amanda, Lembrechts, Jonas J., Lévesque, Esther, Little, Chelsea J., Luoto, Miska, Macek, Petr, Mack, Michelle C., Mathakutha, Rabia, Michelsen, Anders, Milbau, Ann, Molau, Ulf, Morgan, John W., Mörsdorf, Martin Alfons, Nabe-Nielsen, Jacob, Nielsen, Sigrid Schøler, Ninot, Josep M., Oberbauer, Steven F., Olofsson, Johan, Onipchenko, Vladimir G., Petraglia, Alessandro, Pickering, Catherine, Prevéy, Janet S., Rixen, Christian, Rumpf, Sabine B., Schaepman-Strub, Gabriela, Semenchuk, Philipp, Shetti, Rohan, Soudzilovskaia, Nadejda A., Spasojevic, Marko J., Speed, James David Mervyn, Street, Lorna E., Suding, Katharine, Tape, Ken D., Tomaselli, Marcello, Trant, Andrew, Treier, Urs A., Tremblay, Jean-Pierre, Tremblay, Maxime, Venn, Susanna, Virkkala, Anna-Maria, Vowles, Tage, Weijers, Stef, Wilmking, Martin, Wipf, Sonja, Zamin, Tara, Spatial Ecology and Global Change, and Environmental Sciences
- Subjects
Arctic ,plant functional traits ,tundra ,alpine - Abstract
Motivation The Tundra Trait Team (TTT) database includes field-based measurements of key traits related to plant form and function at multiple sites across the tundra biome. This dataset can be used to address theoretical questions about plant strategy and trade-offs, trait?environment relationships and environmental filtering, and trait variation across spatial scales, to validate satellite data, and to inform Earth system model parameters. Main types of variable contained The database contains 91,970 measurements of 18 plant traits. The most frequently measured traits (> 1,000 observations each) include plant height, leaf area, specific leaf area, leaf fresh and dry mass, leaf dry matter content, leaf nitrogen, carbon and phosphorus content, leaf C:N and N:P, seed mass, and stem specific density. Spatial location and grain Measurements were collected in tundra habitats in both the Northern and Southern Hemispheres, including Arctic sites in Alaska, Canada, Greenland, Fennoscandia and Siberia, alpine sites in the European Alps, Colorado Rockies, Caucasus, Ural Mountains, Pyrenees, Australian Alps, and Central Otago Mountains (New Zealand), and sub-Antarctic Marion Island. More than 99% of observations are georeferenced. Time period and grain All data were collected between 1964 and 2018. A small number of sites have repeated trait measurements at two or more time periods. Major taxa and level of measurement Trait measurements were made on 978 terrestrial vascular plant species growing in tundra habitats. Most observations are on individuals (86%), while the remainder represent plot or site means or maximums per species. Software format csv file and GitHub repository with data cleaning scripts in R; contribution to TRY plant trait database (www.try-db.org) to be included in the next version release.
- Published
- 2018
4. Long‐term deepened snow promotes tundra evergreen shrub growth and summertime ecosystem net CO2 gain but reduces soil carbon and nutrient pools.
- Author
-
Christiansen, Casper T., Lafreniére, Melissa J., Henry, Gregory H. R., and Grogan, Paul
- Subjects
SNOW ,TUNDRAS ,SHRUBS ,CARBON in soils ,BIOGEOCHEMISTRY - Abstract
Abstract: Arctic climate warming will be primarily during winter, resulting in increased snowfall in many regions. Previous tundra research on the impacts of deepened snow has generally been of short duration. Here, we report relatively long‐term (7–9 years) effects of experimentally deepened snow on plant community structure, net ecosystem CO
2 exchange (NEE), and soil biogeochemistry in Canadian Low Arctic mesic shrub tundra. The snowfence treatment enhanced snow depth from 0.3 to ~1 m, increasing winter soil temperatures by ~3°C, but with no effect on summer soil temperature, moisture, or thaw depth. Nevertheless, shoot biomass of the evergreen shrub Rhododendron subarcticum was near‐doubled by the snowfences, leading to a 52% increase in aboveground vascular plant biomass. Additionally, summertime NEE rates, measured in collars containing similar plant biomass across treatments, were consistently reduced ~30% in the snowfenced plots due to decreased ecosystem respiration rather than increased gross photosynthesis. Phosphate in the organic soil layer (0–10 cm depth) and nitrate in the mineral soil layer (15–25 cm depth) were substantially reduced within the snowfences (47–70 and 43%–73% reductions, respectively, across sampling times). Finally, the snowfences tended (p = .08) to reduce mineral soil layer C% by 40%, but with considerable within‐ and among plot variation due to cryoturbation across the landscape. These results indicate that enhanced snow accumulation is likely to further increase dominance of R. subarcticum in its favored locations, and reduce summertime respiration and soil biogeochemical pools. Since evergreens are relatively slow growing and of low stature, their increased dominance may constrain vegetation‐related feedbacks to climate change. We found no evidence that deepened snow promoted deciduous shrub growth in mesic tundra, and conclude that the relatively strong R. subarcticum response to snow accumulation may explain the extensive spatial variability in observed circumpolar patterns of evergreen and deciduous shrub growth over the past 30 years. [ABSTRACT FROM AUTHOR]- Published
- 2018
- Full Text
- View/download PDF
5. Greater temperature sensitivity of plant phenology at colder sites: implications for convergence across northern latitudes.
- Author
-
Prevéy, Janet, Vellend, Mark, Rüger, Nadja, Hollister, Robert D., Bjorkman, Anne D., Myers‐Smith, Isla H., Elmendorf, Sarah C., Clark, Karin, Cooper, Elisabeth J., Elberling, Bo, Fosaa, Anna M., Henry, Gregory H. R., Høye, Toke T., Jónsdóttir, Ingibjörg S., Klanderud, Kari, Lévesque, Esther, Mauritz, Marguerite, Molau, Ulf, Natali, Susan M., and Oberbauer, Steven F.
- Subjects
FLOWERING trees ,CLIMATE change ,PHENOLOGY ,CASSIOPE (Mythical queen) ,GENE flow - Abstract
Warmer temperatures are accelerating the phenology of organisms around the world. Temperature sensitivity of phenology might be greater in colder, higher latitude sites than in warmer regions, in part because small changes in temperature constitute greater relative changes in thermal balance at colder sites. To test this hypothesis, we examined up to 20 years of phenology data for 47 tundra plant species at 18 high-latitude sites along a climatic gradient. Across all species, the timing of leaf emergence and flowering was more sensitive to a given increase in summer temperature at colder than warmer high-latitude locations. A similar pattern was seen over time for the flowering phenology of a widespread species, Cassiope tetragona. These are among the first results highlighting differential phenological responses of plants across a climatic gradient and suggest the possibility of convergence in flowering times and therefore an increase in gene flow across latitudes as the climate warms. [ABSTRACT FROM AUTHOR]
- Published
- 2017
- Full Text
- View/download PDF
6. Sex- and habitat-specific responses of a high arctic willow, salix arctica, to experimental climate change
- Author
-
Macdonald, S. Ellen, Jones, Michael H., and Henry, Gregory H. R.
- Subjects
CARBON dioxide ,HABITATS ,ECOLOGY ,CLIMATE change - Abstract
Dioecious plant species and those occupying diverse habitats may present special analytical problems to researchers examining effects of climate change. Here we report the results from two complementary studies designed to determine the importance of sex and habitat on gas exchange and growth of male and female individuals of a dioecious, circumpolar willow, Salix arctica, in the Canadian High Arctic. In fieldstudies, male and female willows from dry and wet habitats were subjected to passively enhanced summer temperature (~1.3 deg. C) using small open-top chambers over three years. Peak season gas exchange varied significantly by willow sex and habitat. Overall net assimilation was higher in the dry habitat than in the wet, and higher in females than in males. In the dry habitat, net assimilation of females was enhanced by experimental warming, but decreased in males. In the wet habitat, net assimilation of females was substantially depressed by experimental warming, while males showed an inconsistent response. Development and growth of male and female catkins were enhanced by elevated temperature more than leaf fascicles, but leaf fascicle developmentand growth varied more between the two habitats, particularly in males. In a controlled environment study, male and female willows from these same wet and dry habitats were grown in a 2 x 2 factorial experiment including 1x or 2x ambient [CO
2 ] and 5 or 12 deg. C. The sexes responded very differently to the experimental treatments, but we found no effect of original habitat. Net assimilation in maleswas affected by the interaction of temperature and CO2 , but in females by CO2 only. Our results demonstrate (a) significant intraspecific and intersexual differences in arctic willow physiology and growth, (b) that these differences are affected by environmental conditions expected to accompany global climate change, and(c) that sex- and habitat-specific responses should be explicitly accoun [ABSTRACT FROM AUTHOR]- Published
- 1999
7. Dendrochronological Potential of the Arctic Dwarf-Shrub Cassiope tetragona
- Author
-
Rayback, Shelly A. and Henry, Gregory H. R.
- Published
- 2005
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.