1. Effect of the COVID-19 Lockdown on Ambient Air Quality in Major Cities of Nepal
- Author
-
Bashu Dev Baral and Kapil Thapa
- Subjects
air quality index ,aqi ,covid-19 ,lockdown ,particulate matter ,Environmental technology. Sanitary engineering ,TD1-1066 - Abstract
Background. The Nepalese government announced a nationwide lockdown beginning on March 24, 2020 as an attempt to restrain the spread of COVID-19. The prohibition in flight operations and movement of vehicles, factory shutdowns and restriction in people's movement due to the lockdown led to a significant reduction in the amounts of pollutants degrading air quality in many countries. Objectives. The present study aimed to analyze changes in particulate matter (PM) emissions and the air quality index (AQI) of six cities in Nepal i.e., Damak, Simara, Kathmandu, Pokhara, Nepalgunj and Surkhet due to the nationwide lockdown in response to the COVID-19 outbreak. Methods. Daily PM concentrations of each of the six study cities from January 24 to September 21, 2020 were obtained from the World Air Quality Index project (https://aqicn.org) and analyzed using R Studio software. The drop percentage was calculated to determine the change in PM2.5 and PM10 concentration during different time periods. Independent sample Mann–Whitney U tests were performed to test the significance of differences in mean concentration for each site during the lockdown period (24 March–24 July 2020) and its corresponding period in 2019. Similarly, the significance of differences in mean concentrations between the lockdown period and the period immediately before lockdown (23 January–23 March) was also examined using the same test. Results. During the lockdown period, in overall Nepal, AQIPM2.5 and AQIPM10 were within the moderate zone for the maximum number of days. As a result of the lockdown, the highest immediate and final drop of PM2.5 was observed in Damak (26.37%) and Nepalgunj (80.86%), respectively. Similarly, the highest immediate drop of PM10 was observed in Surkhet (37.22%) and finally in Nepalgunj (81.14%). Analysis with the Mann–Whitney U test indicated that for both PM types, all sites showed a statistically significant (p < 0.05) difference in mean concentrations during lockdown and the corresponding period in 2019. Conclusions. The present study explored the positive association between vehicular movement and PM emissions, highlighting the need for alternative fuel sources to improve air quality and human health. Competing Interests. The authors declare no competing financial interests.
- Published
- 2021
- Full Text
- View/download PDF