1. Third order residual distribution schemes for the Navier–Stokes equations
- Author
-
N. Villedieu, Tiago Quintino, Mario Ricchiuto, Herman Deconinck, von Karman Institute for Fluid Dynamics (VKI), Parallel tools for Numerical Algorithms and Resolution of essentially Hyperbolic problems (BACCHUS), Centre National de la Recherche Scientifique (CNRS)-Université de Bordeaux (UB)-Inria Bordeaux - Sud-Ouest, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Institut de Mathématiques de Bordeaux (IMB), Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS), Inria Bordeaux - Sud-Ouest, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Bordeaux (UB)-Centre National de la Recherche Scientifique (CNRS), and Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1 (UB)-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Physics and Astronomy (miscellaneous) ,Discretization ,Boundary (topology) ,Upwind scheme ,Residual ,01 natural sciences ,[SPI.MECA.MEFL]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Fluids mechanics [physics.class-ph] ,Mathematics::Numerical Analysis ,010305 fluids & plasmas ,Physics::Fluid Dynamics ,symbols.namesake ,Inviscid flow ,0103 physical sciences ,[PHYS.MECA.MEFL]Physics [physics]/Mechanics [physics]/Fluid mechanics [physics.class-ph] ,0101 mathematics ,Navier–Stokes equations ,ComputingMilieux_MISCELLANEOUS ,Mathematics ,Numerical Analysis ,Applied Mathematics ,Mathematical analysis ,1. No poverty ,Reynolds number ,Finite element method ,Computer Science Applications ,010101 applied mathematics ,Computational Mathematics ,Modeling and Simulation ,symbols ,[MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA] - Abstract
We construct a third order multidimensional upwind residual distribution scheme for the system of the Navier–Stokes equations. The underlying approximation is obtained using standard P2 Lagrange finite elements. To discretise the inviscid component of the equations, each element is divided in sub-elements over which we compute a high order residual defined as the integral of the inviscid fluxes on the boundary of the sub-element. The residuals are distributed to the nodes of each sub-element in a multi-dimensional upwind way. To obtain a discretisation of the viscous terms consistent with this multi-dimensional upwind approach, we make use of a Petrov–Galerkin analogy. The analogy allows to find a family of test functions which can be used to obtain a weak approximation of the viscous terms. The performance of this high-order method is tested on flows with high and low Reynolds number.
- Published
- 2011
- Full Text
- View/download PDF