1. Single-Cell Time-Resolved Metabolomics and Lipidomics Reveal Apoptotic and Ferroptotic Heterogeneity during Foam Cell Formation.
- Author
-
Wang Y, Wang Z, Zou Y, Lin L, and Qiao L
- Subjects
- Humans, Animals, Mice, Macrophages metabolism, Macrophages cytology, Foam Cells metabolism, Lipidomics methods, Metabolomics methods, Single-Cell Analysis, Apoptosis, Ferroptosis
- Abstract
Macrophage-derived foam cells play a crucial role in plaque formation and rupture during the progression of atherosclerosis. Traditional studies have often overlooked the heterogeneity of foam cells, focusing instead on populations of cells. To address this, we have developed time-resolved, single-cell metabolomics and lipidomics approaches to explore the heterogeneity of macrophages during foam cell formation. Our dynamic metabolomic and lipidomic analyses revealed a dual regulatory axis involving inflammation and ferroptosis. Further, single-cell metabolomics and lipidomics have delineated a continuum of macrophage states, with varied susceptibilities to apoptosis and ferroptosis. Single-cell transcriptomic profiling confirmed these divergent fates, both in established cell lines and in macrophages derived from peripheral blood monocytes. This research has uncovered the complex molecular interactions that dictate these divergent cell fates, providing crucial insights into the pathogenesis of atherosclerosis.
- Published
- 2024
- Full Text
- View/download PDF