1. Loss of apoptosis-inducing factor critically affects MIA40 function.
- Author
-
Meyer K, Buettner S, Ghezzi D, Zeviani M, Bano D, and Nicotera P
- Subjects
- Animals, Apoptosis Inducing Factor deficiency, Humans, Mice, Mitochondria genetics, Mitochondria metabolism, Mitochondrial Precursor Protein Import Complex Proteins, Oxidative Phosphorylation, Apoptosis genetics, Apoptosis Inducing Factor genetics, Mitochondrial Membrane Transport Proteins genetics
- Abstract
Mitochondrial apoptosis-inducing factor (AIF) influences the oxidative phosphorylation (OXPHOS) system and can be recruited as a mediator of cell death. Pathogenic mutations in the AIFM1 gene cause severe human diseases. Clinical manifestations include inherited peripheral neuropathies, prenatal cerebral abnormalities and progressive mitochondrial encephalomyopathies. In humans, rodents and invertebrates, AIF deficiency results in loss of respiratory complexes and, therefore, impaired OXPHOS. The molecular mechanisms underlying AIF-induced mitochondrial dysfunction remain elusive. Here we show that AIF physically interacts with the oxidoreductase CHCHD4/MIA40. In patient-derived fibroblasts as well as in tissues and glia cells from Harlequin (Hq) mutant mice, AIF deficiency correlates with decreased MIA40 protein levels, without affecting mRNA transcription. Importantly, MIA40 overexpression counteracts loss of respiratory subunits in Hq cells. Together, our findings suggest that MIA40 reduction contributes to the effects of AIF deficiency on OXPHOS, as it may impact on the correct assembly and maintenance of the respiratory subunits. This may be relevant for the development of new therapeutic approaches for AIF-related mitochondrial disorders.
- Published
- 2015
- Full Text
- View/download PDF