1. An arabinan from Citrus grandis fruits alleviates ischemia/reperfusion-induced myocardial cell apoptosis via the Nrf2/Keap1 and IRE1/GRP78 signaling pathways.
- Author
-
Zhang S, Xing N, Jiao Y, Li J, Wang T, Zhang Q, Hu X, Li C, and Kuang W
- Subjects
- Animals, Myocytes, Cardiac drug effects, Myocytes, Cardiac metabolism, Protein Serine-Threonine Kinases metabolism, Fruit chemistry, Male, Endoribonucleases metabolism, Endoplasmic Reticulum Chaperone BiP, Mice, Heat-Shock Proteins metabolism, Rats, NF-E2-Related Factor 2 metabolism, Apoptosis drug effects, Citrus chemistry, Kelch-Like ECH-Associated Protein 1 metabolism, Signal Transduction drug effects, Myocardial Reperfusion Injury drug therapy, Myocardial Reperfusion Injury metabolism
- Abstract
Citrus grandis fruit is a famous traditional Chinese medicine with various bioactivities, including cardioprotective effects. Polysaccharides are one of the key active ingredients responsible for its cardioprotective effects. This study aimed to investigate the structure and cardioprotective effect of a homogeneous polysaccharide from C. grandis fruit (CGP80-1) and explore its mechanism against myocardial ischemia-reperfusion (MI/R) injury. Structure analysis showed that CGP80-1 (11,917 Da) is an arabinan with compact coil chain conformation, containing →5)-α-L-Araf-(1→, →3,5)-α-L-Araf-(1→, and →2,3,5)-α-L-Araf-(1→ as the backbone, as well as →5)-α-L-Araf-(1→ and t-α-L-Araf as side-chains substituted at the C2 and C3 positions. Pharmacological experiments showed that pre-treatment with CGP80-1 could effectively alleviate MI/R injury by improving endogenous antioxidant enzymes and cardiac enzymes, reducing reactive oxygen species levels, and regulating apoptosis-related proteins such as caspase-3, Bax, and Bcl-2. The protective effects were correlated with the Nrf2/Keap1 and IRE1/GRP78 signaling pathways. Further analysis of structure-activity relationships revealed that the myocardial protection effects of CGP80-1 might be attributed to its appropriate molecular weight, high arabinose content, and unique compact coil chain conformation. Overall, our results provide insight into the chemical structure of CGP80-1 and its mechanism of action, suggesting that CGP80-1 could be a candidate drug for myocardial protection., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier Ltd. All rights reserved.)
- Published
- 2025
- Full Text
- View/download PDF