5 results on '"LIU Kaili"'
Search Results
2. Tongxinluo Exerts Inhibitory Effects on Pyroptosis and Amyloid-β Peptide Accumulation after Cerebral Ischemia/Reperfusion in Rats.
- Author
-
Wang, Bing, Lyu, Zhongkuan, Chan, Yuanjin, Li, Qiyue, Zhang, Li, Liu, Kaili, Li, Yaming, and Yu, Zhonghai
- Subjects
INTERLEUKINS ,HERBAL medicine ,BLOOD-brain barrier ,HIPPOCAMPUS (Brain) ,ANIMAL experimentation ,ISCHEMIC stroke ,APOPTOSIS ,AMYLOID beta-protein precursor ,RATS ,NUCLEOTIDES ,DEMENTIA ,MEMBRANE proteins ,NEUROGLIA ,CEREBRAL ischemia ,REPERFUSION injury ,CHINESE medicine ,CASPASES ,LYMPHATICS - Abstract
Amyloid-β peptide (Aβ) accumulation is a detrimental factor in cerebral ischemia/reperfusion (I/R) injuries accounting for dementia induced by ischemic stroke. In addition to blood brain barrier (BBB), the glymphatic system mediated by aquaporin-4 (AQP-4) on astrocytic endfeet functions as an important pathway for the clearance of Aβ in the brain. Cerebral I/R induced astrocytic pyroptosis potentially causes the AQP-4 polarization loss and dysfunctional BBB-glymphatic system exacerbating the accumulation of Aβ. Furthermore, Aβ toxicity has been identified as a trigger of pyroptosis and BBB damage, suggesting an amplified effect of Aβ accumulation after cerebral I/R. Therefore, based on our previous work, this study was designed to explore the intervention effects of Tongxinluo (TXL) on astrocytic pyroptosis and Aβ accumulation after cerebral I/R in rats. The results showed that TXL intervention obviously alleviated the degree of pyroptosis by downregulating expression levels of cleaved caspase-11/1, N-terminal gasdermin D, nucleotide-binding oligomerization domain-like receptors pyrin domain containing 3 (NLRP3), interleukin-6 (IL-6), and cleaved IL-1β and abated astrocytic pyroptosis after cerebral I/R. Moreover, TXL intervention facilitated to restore AQP-4 polarization and accordingly relieve Aβ accumulation around astrocytes in ischemic cortex and hippocampus as well as the formation of toxic Aβ (Aβ
1–42 oligomer). Our study indicated that TXL intervention could exert protective effects on ischemic brain tissues against pyroptotic cell death, inhibit astrocytic pyroptosis, and reduce toxic Aβ accumulation around astrocytes in cerebral I/R injuries. Furthermore, our study provides biological evidence for the potential possibility of preventing and treating poststroke dementia with TXL in clinical practice. [ABSTRACT FROM AUTHOR]- Published
- 2021
- Full Text
- View/download PDF
3. Bufalin: A Systematic Review of Research Hotspots and Antitumor Mechanisms by Text Mining and Bioinformatics.
- Author
-
Zhang, Xian, Zhao, Xiaoxuan, Liu, Kaili, Che, Yuxuan, Qiu, Xun, Qu, Yanjun, Sun, Xiuhua, and Song, Jincheng
- Subjects
CELL proliferation ,ANTINEOPLASTIC agents ,APOPTOSIS ,CELL lines ,CELLULAR signal transduction ,CHINESE medicine ,MEDLINE ,ONLINE information services ,RESEARCH funding ,DATA mining ,SYSTEMATIC reviews ,BIOINFORMATICS ,DATA analysis software ,PHARMACODYNAMICS - Abstract
Bufalin is an anticancer drug extract from traditional Chinese medicine. Several articles about bufalin have been published. However, the literature on bufalin has not yet been systematically studied. This study aimed to identify the study status and knowledge structures of bufalin and to summarize the antitumor mechanism. Data were retrieved and downloaded from the PubMed database. The softwares of BICOMB, gCLUTO, Ucinet 6.0, and NetDraw2.084 were used to analyze these publications. The bufalin related genes were recognized and tagged by ABNER software. Then these BF-related genes were performed by Gene Ontology (GO) enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analysis, and protein-protein interaction (PPI) network analysis. A total of 474 papers met the search criteria from 2000 to 2019. By biclustering clustering analysis, the 50 high-frequency main MeSH terms/subheadings were classified into 5 clusters. The clusters of drug therapy and the mechanism of bufalin were hotspot topics. A total of 50 genes were identified as BF-related genes. PPI network analysis showed that inducing apoptosis was the main effect of bufalin, and apoptosis-related gene Caspase 3 was the most reported by people. Bufalin could inhibit the proliferation, invasion, and metastasis of cancer cells through multiple signaling pathways, such as PI3K/AKT, Hedgehog, MAPK/JNK, Wnt/ β -catenin, TGF- β /Smad, Integrin signaling pathway, and NF-KB signaling pathway via KEGG analysis. Through the quantitative analysis of bufalin literature, we revealed the research status and hot spots in this field and provided some guidance for further research. [ABSTRACT FROM AUTHOR]
- Published
- 2020
- Full Text
- View/download PDF
4. Hispidulin: A promising flavonoid with diverse anti-cancer properties.
- Author
-
Liu, Kaili, Zhao, Fei, Yan, Jingjing, Xia, Zhengchao, Jiang, Dandan, and Ma, Peizhi
- Subjects
- *
CELL cycle , *ANTINEOPLASTIC agents , *ALTERNATIVE medicine , *CELL proliferation , *CANCER cells , *ANTIMETABOLITES , *ANTICONVULSANTS - Abstract
In recent years, natural products have increasingly attracted more attention because of their potential anticancer activity and low intrinsic toxicity. Hispidulin is a natural flavonoid with a wide range of biological activities, including anti-inflammatory, antifungal, antiplatelet, anticonvulsant, anti-osteoporotic, and notably anticancer activities. Numerous in vivo and in vitro studies have shown that hispidulin, as a potential anticancer drug, affects cell proliferation, apoptosis, cell cycle, angiogenesis, and metastasis. Moreover, hispidulin exhibits synergistic anti-tumor effects when combined with some common clinical anticancer drugs (e.g. , gemcitabine, 5-fluoroucil, sunitinib, temozolomide, and TRAIL). The combination of hispidulin and chemotherapeutic drugs reduces the efflux of chemotherapeutic drugs, enhances the chemosensitivity of cancer cells, and reverses drug resistance. Herein, we outlined the anticancer effects of hispidulin in various cancers and its intracellular molecular targets and related mechanisms of its anticancer activity. Based on the available literature, it can be established that hispidulin has significant potential to become an important complementary medicine for cancer prevention and treatment. However, more in-depth in vitro and in vivo studies should be conducted to support its translation from bench to bedside. Unlabelled Image [ABSTRACT FROM AUTHOR]
- Published
- 2020
- Full Text
- View/download PDF
5. Endoplasmic reticulum stress triggers Xanthoangelol-induced protective autophagy via activation of JNK/c-Jun Axis in hepatocellular carcinoma.
- Author
-
Li, Zichao, Zhang, Luying, Han, Mei, Liu, Kaili, Xing, Lifei, Gao, Hui, Gao, Mingquan, Zhang, Zhuang, Gong, Zhi, Lu, Kui, and Shi, Xianzhou
- Subjects
ENDOPLASMIC reticulum ,HEPATOCELLULAR carcinoma ,CELL death ,ACRIDINE orange ,AUTOPHAGY ,PROTEIN expression - Abstract
Background: Xanthoangelol (XAG) was reported to exhibit antitumor properties in several cancer. However, the specific anti-tumor activity of XAG in human hepatocellular carcinoma (HCC) and the relevant mechanisms are not known. Methods: The effects of XAG on HCC cell proliferation and apoptosis were respectively examined by CCK-8 assay and Annexin V-FITC/PI apoptosis kit. Western blotting was conducted to detect the expression of proteins. The effect of XAG on the development of acidic vesicle organelles was assessed using acridine orange staining. mRFP-GFP-LC3 adenovirus was used to transfect HCC cells and the formation of autolysosome was detected using a confocal microscope. Results: Mechanistically, XAG promotes HCC cell death through triggering intrinsic apoptosis pathway, not extrinsic apoptotic pathway. Furthermore, XAG treatment induced autophagy in Bel 7402 and SMMC 7721 cells, as evidenced by an increase in autophagy-associated proteins, including LC3B-II, Beclin-1, and Atg5. Interestingly, inhibition of autophagy with 3-MA, Bafilomycin A1 (Baf A1), or siRNA targeting Atg5 effectively enhanced the apoptotic cell ratio in XAG-treated cells, indicating that protective effect of autophagy induced by XAG in HCC. Moreover, autophagy induced by XAG was mediated by activating endoplasmic reticulum stress (ERS), along with administration of XAG, the expression levels of ERS-associated proteins, including CHOP, GRP78, ATF6, p-eIF2α, IRE1α, and cleaved caspase-12 were significantly increased in HCC cells. Meanwhile, suppressing ERS with chemical chaperones (TUDCA) or CHOP shRNA could effectively abrogate the autophagy-inducing effect of XAG, and increase the apoptotic cell death. Further mechanistic studies showed that ERS-induced autophagy in XAG-treated cells was mediated by activation of JNK/c-jun pathway. XAG treatment resulted in the increase of p-JNK and p-c-jun, while suppressing ERS with TUDCA or CHOP shRNA could effectively reverse it. Meanwhile, SP600125, a JNK inhibitor, effectively reversed XAG-induced protective autophagy and enhanced cell apoptosis in XAG-treated HCC cells. In vivo results demonstrated that XAG exerts potent antitumor properties with low toxicity. Conclusions: Collectively, these results suggested that XAG could be served as a promising candidate for the treatment and prevention of HCC. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.