1. Design of MERS-CoV entry inhibitory short peptides based on helix-stabilizing strategies.
- Author
-
Li J, Li Q, Xia S, Tu J, Zheng L, Wang Q, Jiang S, and Wang C
- Subjects
- Peptides chemistry, Protein Conformation, alpha-Helical, Lipopeptides pharmacology, Lipopeptides therapeutic use, Antiviral Agents pharmacology, Antiviral Agents chemistry, Middle East Respiratory Syndrome Coronavirus drug effects
- Abstract
Interaction between Middle East respiratory syndrome coronavirus (MERS-CoV) spike (S) protein heptad repeat-1 domain (HR1) and heptad repeat-2 domain (HR2) is critical for the MERS-CoV fusion process. This interaction is mediated by the α-helical region from HR2 and the hydrophobic groove in a central HR1 trimeric coiled coil. We sought to develop a short peptidomimetic to act as a MERS-CoV fusion inhibitor by reproducing the key recognition features of HR2 helix. This was achieved by the use of helix-stabilizing strategies, including substitution with unnatural helix-favoring amino acids, introduction of ion pair interactions, and conjugation of palmitic acid. The resulting 23-mer lipopeptide, termed AEEA-C16, inhibits MERS-CoV S protein-mediated cell-cell fusion at a low micromolar level comparable to that of the 36-mer HR2 peptide HR2P-M2. Collectively, our studies provide new insights into developing short peptide-based antiviral agents to treat MERS-CoV infection., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 Elsevier Ltd. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF