1. Construction of eukaryotic expression vector with mBD1-mBD3 fusion genes and exploring its activity against influenza A virus.
- Author
-
Li W, Feng Y, Kuang Y, Zeng W, Yang Y, Li H, Jiang Z, and Li M
- Subjects
- Animals, Cell Line, DNA-Binding Proteins genetics, Disease Models, Animal, Dogs, Female, Lung virology, Mice, Mice, Inbred BALB C, Recombinant Fusion Proteins genetics, Recombinant Fusion Proteins immunology, Survival Analysis, Transcription Factors genetics, Viral Load, Virus Cultivation, Antiviral Agents administration & dosage, Biological Products administration & dosage, DNA-Binding Proteins immunology, Genetic Vectors, Influenza A virus immunology, Orthomyxoviridae Infections prevention & control, Transcription Factors immunology
- Abstract
Influenza (flu) pandemics have exhibited a great threat to human health throughout history. With the emergence of drug-resistant strains of influenza A virus (IAV), it is necessary to look for new agents for treatment and transmission prevention of the flu. Defensins are small (2-6 kDa) cationic peptides known for their broad-spectrum antimicrobial activity. Beta-defensins (β-defensins) are mainly produced by barrier epithelial cells and play an important role in attacking microbe invasion by epithelium. In this study, we focused on the anti-influenza A virus activity of mouse β-defensin 1 (mBD1) and β defensin-3 (mBD3) by synthesizing their fusion peptide with standard recombinant methods. The eukaryotic expression vectors pcDNA3.1(+)/mBD1-mBD3 were constructed successfully by overlap-PCR and transfected into Madin-Darby canine kidney (MDCK) cells. The MDCK cells transfected by pcDNA3.1(+)/mBD1-mBD3 were obtained by G₄₁₈ screening, and the mBD1-mBD3 stable expression pattern was confirmed in MDCK cells by RT-PCR and immunofluorescence assay. The acquired stable transfected MDCK cells were infected with IAV (A/PR/8/34, H1N1, 0.1 MOI) subsequently and the virus titers in cell culture supernatants were analyzed by TCID5₅₀ 72 h later. The TCID₅₀ titer of the experimental group was clearly lower than that of the control group (p < 0.001). Furthermore, BALB/C mice were injected with liposome-encapsulated pcDNA3.1(+)/mBD1-mBD3 through muscle and then challenged with the A/PR/8/34 virus. Results showed the survival rate of 100% and lung index inhibitory rate of 32.6% in pcDNA3.1(+)/mBD1-mBD3group; the TCID₅₀ titer of lung homogenates was clearly lower than that of the control group (p < 0.001). This study demonstrates that mBD1-mBD3 expressed by the recombinant plasmid pcDNA3.1(+)/mBD1-mBD3 could inhibit influenza A virus replication both in vitro and in vivo. These observations suggested that the recombinant mBD1-mBD3 might be developed into an agent for influenza prevention and treatment.
- Published
- 2014
- Full Text
- View/download PDF