1. Moderate Protein Restriction Protects Against Focal Cerebral Ischemia in Mice by Mechanisms Involving Anti-inflammatory and Anti-oxidant Responses.
- Author
-
de Carvalho TS, Sanchez-Mendoza EH, Nascentes LM, Schultz Moreira AR, Sardari M, Dzyubenko E, Kleinschnitz C, and Hermann DM
- Subjects
- Animals, Blood-Brain Barrier pathology, Brain Edema blood, Brain Edema complications, Brain Edema pathology, Brain Ischemia blood, Brain Ischemia complications, Cell Survival, Leukocytes pathology, Lipoproteins, LDL blood, Male, Mice, Inbred C57BL, Microglia pathology, NAD metabolism, Neurons metabolism, Neurons pathology, Nitric Oxide Synthase Type II metabolism, Permeability, Triglycerides blood, Up-Regulation, Anti-Inflammatory Agents therapeutic use, Antioxidants therapeutic use, Brain Ischemia prevention & control, Brain Ischemia therapy, Diet, Protein-Restricted
- Abstract
Food composition influences stroke risk, but its effects on ischemic injury and neurological deficits are poorly examined. While severe reduction of protein content was found to aggravate neurological impairment and brain injury as a consequence of combined energy-protein malnutrition, moderate protein restriction not resulting in energy deprivation was recently suggested to protect against perinatal hypoxia-ischemia. Male C57BL6/j mice were exposed to moderate protein restriction by providing a normocaloric diet containing 8% protein (control: 20% protein) for 7, 14, or 30 days. Intraluminal middle cerebral artery occlusion was then induced. Mice were sacrificed 24 h later. Irrespective of the duration of food modification (that is, 7-30 days), protein restriction reduced neurological impairment of ischemic mice revealed by a global and focal deficit score. Prolonged protein restriction over 30 days also reduced infarct volume, brain edema, and blood-brain barrier permeability and increased the survival of NeuN+ neurons in the core of the stroke (i.e., striatum). Neuroprotection by prolonged protein restriction went along with reduced brain infiltration of CD45+ leukocytes and reduced expression of inducible NO synthase and interleukin-1β. As potential mechanisms, increased levels of the NAD-dependent deacetylase sirtuin-1 and anti-oxidant glutathione peroxidase-3 were noted in ischemic brain tissue. Irrespective of the protein restriction duration, a shift from pro-oxidant oxidative stress markers (NADPH oxidase-4) to anti-oxidant markers (superoxide dismutase-1/2, glutathione peroxidase-3 and catalase) was found in the liver. Moderate protein restriction protects against ischemia in the adult brain. Accordingly, dietary modifications may be efficacious strategies promoting stroke outcome. more...
- Published
- 2019
- Full Text
- View/download PDF