1. Investigation of antioxidant, antibacterial, antidiabetic, and cytotoxicity potential of silver nanoparticles synthesized using the outer peel extract of Ananas comosus (L.).
- Author
-
Das G, Patra JK, Debnath T, Ansari A, and Shin HS
- Subjects
- Bacteria growth & development, Dose-Response Relationship, Drug, Hep G2 Cells, Humans, Ananas chemistry, Anti-Bacterial Agents chemical synthesis, Anti-Bacterial Agents chemistry, Anti-Bacterial Agents pharmacology, Antioxidants chemical synthesis, Antioxidants chemistry, Antioxidants pharmacology, Hypoglycemic Agents chemical synthesis, Hypoglycemic Agents chemistry, Hypoglycemic Agents pharmacology, Metal Nanoparticles chemistry, Plant Extracts chemistry, Silver chemistry, Silver pharmacology
- Abstract
Currently, green nanotechnology-based approaches using waste materials from food have been accepted as an environmentally friendly and cost-effective approach with various biomedical applications. In the current study, AgNPs were synthesized using the outer peel extract of the fruit Ananas comosus (AC), which is a food waste material. Characterization was done using UV-visible spectroscopy, X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, scanning electronic microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX) analyses. The formation of AgNPs has confirmed through UV-visible spectroscopy (at 485 nm) by the change of color owing to surface Plasmon resonance. Based on the XRD pattern, the crystalline property of AgNPs was established. The functional group existing in AC outer peel extract accountable for the reduction of Ag+ ion and the stabilization of AC-AgNPs was investigated through FT-IR. The morphological structures and elemental composition was determined by SEM and EDX analysis. With the growing application of AgNPs in biomedical perspectives, the biosynthesized AC-AgNPs were evaluated for their antioxidative, antidiabetic, and cytotoxic potential against HepG2 cells along with their antibacterial potential. The results showed that AC-AgNPs are extremely effective with high antidiabetic potential at a very low concentration as well as it exhibited higher cytotoxic activity against the HepG2 cancer cells in a dose-dependent manner. It also exhibited potential antioxidant activity and moderate antibacterial activity against the four tested foodborne pathogenic bacteria. Overall, the results highlight the effectiveness and potential applications of AC-AgNPs in biomedical fields such as in the treatment of acute illnesses as well as in drug formulation for treating various diseases such as cancer and diabetes. Further, it has applications in wound dressing or in treating bacterial related diseases., Competing Interests: The authors have declared that no competing interests exist.
- Published
- 2019
- Full Text
- View/download PDF