1. [Lactic starter cultures to improve the oat bioactive compounds].
- Author
-
Carabajal Torrez JA, Llebeili Y, Rodríguez de Olmos A, and Gerez CL
- Subjects
- Fermentation, Phenols, Plant Extracts, Antioxidants metabolism, Avena metabolism, Lactobacillales
- Abstract
The objective of this work was to study lactic fermentation as a biostrategy to enhance the antioxidant activity of oats. The adaptability of 31 strains of lactic bacteria (LB) in an oats/water system (OWS/SAA) was evaluated, measuring growth, acidification and fermentation activity (impedimetric method; detection time [DT], maximum rate of conductance change [MRCC/VMCC] and percentage of conductance change [PCC]). Moreover, the content of phenolic compounds (PC) was determined using the Folin-Ciocalteu method (gallic acid equivalents [GAE]), free peptides and amino acids and free radical scavenging activity (DPPH
• and ABTS•+ methods) of methanolic and aqueous extracts obtained from fermented OWS/SAAs (fOWS/SAAf) were determined. Six strains have shown the best adaptability to SAA, with high values of VMCC (0.34-0.47 μS/min) and PCC (53.6-66.6%), and low values of DT (≤ 3 h). In these f/OWS/SAAf the chemical composition was also modified (PC concentration, peptides and free amino acids) with strain-dependent behavior. The PC content in f/OWS/SAAf using these six strains (29.1-36.9 μg GAE/ml) was higher than the control content in OWS/SAA control (17.1 ± 1.9 μg GAE/ml). An increase (9-25.5%) in antioxidant activity in f/OWS/SAAf methanolic extracts was detected using both methods. Minor modifications were observed in the peptide and free amino acid content of SAA and their antioxidant activity. Our results show LB ability to adapt to oat as fermentation substrate and increase the content of its antioxidant compounds., (Copyright © 2021 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.)- Published
- 2021
- Full Text
- View/download PDF