1. Design and Discovery of N -(3-(2-(2-Hydroxyethoxy)-6-morpholinopyridin-4-yl)-4-methylphenyl)-2-(trifluoromethyl)isonicotinamide, a Selective, Efficacious, and Well-Tolerated RAF Inhibitor Targeting RAS Mutant Cancers: The Path to the Clinic.
- Author
-
Ramurthy S, Taft BR, Aversa RJ, Barsanti PA, Burger MT, Lou Y, Nishiguchi GA, Rico A, Setti L, Smith A, Subramanian S, Tamez V, Tanner H, Wan L, Hu C, Appleton BA, Mamo M, Tandeske L, Tellew JE, Huang S, Yue Q, Chaudhary A, Tian H, Iyer R, Hassan AQ, Mathews Griner LA, La Bonte LR, Cooke VG, Van Abbema A, Merritt H, Gampa K, Feng F, Yuan J, Mishina Y, Wang Y, Haling JR, Vaziri S, Hekmat-Nejad M, Polyakov V, Zang R, Sethuraman V, Amiri P, Singh M, Sellers WR, Lees E, Shao W, Dillon MP, and Stuart DD
- Subjects
- Animals, Antineoplastic Agents pharmacology, Drug Design, Drug Discovery trends, Humans, Molecular Docking Simulation methods, Molecular Docking Simulation trends, Mutation drug effects, Protein Kinase Inhibitors pharmacology, Xenograft Model Antitumor Assays methods, Antineoplastic Agents chemistry, Drug Discovery methods, Mutation genetics, Protein Kinase Inhibitors chemistry, Proto-Oncogene Proteins B-raf antagonists & inhibitors, Proto-Oncogene Proteins B-raf genetics
- Abstract
Direct pharmacological inhibition of RAS has remained elusive, and efforts to target CRAF have been challenging due to the complex nature of RAF signaling, downstream of activated RAS, and the poor overall kinase selectivity of putative RAF inhibitors. Herein, we describe 15 (LXH254, Aversa, R.; et al. Int. Patent WO2014151616A1, 2014), a selective B/C RAF inhibitor, which was developed by focusing on drug-like properties and selectivity. Our previous tool compound, 3 (RAF709; Nishiguchi, G. A.; et al. J. Med. Chem. 2017 , 60 , 4969), was potent, selective, efficacious, and well tolerated in preclinical models, but the high human intrinsic clearance precluded further development and prompted further investigation of close analogues. A structure-based approach led to a pyridine series with an alcohol side chain that could interact with the DFG loop and significantly improved cell potency. Further mitigation of human intrinsic clearance and time-dependent inhibition led to the discovery of 15 . Due to its excellent properties, it was progressed through toxicology studies and is being tested in phase 1 clinical trials.
- Published
- 2020
- Full Text
- View/download PDF