1. Isosteric Replacement of Sulfur to Selenium in a Thiosemicarbazone: Promotion of Zn(II) Complex Dissociation and Transmetalation to Augment Anticancer Efficacy.
- Author
-
Kaya B, Gholam Azad M, Suleymanoglu M, Harmer JR, Wijesinghe TP, Richardson V, Zhao X, Bernhardt PV, Dharmasivam M, and Richardson DR
- Subjects
- Humans, Cell Line, Tumor, Cell Proliferation drug effects, Coordination Complexes pharmacology, Coordination Complexes chemistry, Coordination Complexes chemical synthesis, Structure-Activity Relationship, Drug Screening Assays, Antitumor, Thiosemicarbazones chemistry, Thiosemicarbazones pharmacology, Thiosemicarbazones chemical synthesis, Antineoplastic Agents pharmacology, Antineoplastic Agents chemistry, Antineoplastic Agents chemical synthesis, Zinc chemistry, Selenium chemistry, Selenium pharmacology, Sulfur chemistry
- Abstract
We implemented isosteric replacement of sulfur to selenium in a novel thiosemicarbazone (PPTP4c4mT) to create a selenosemicarbazone (PPTP4c4mSe) that demonstrates potentiated anticancer efficacy and selectivity. Their design specifically incorporated cyclohexyl and styryl moieties to sterically inhibit the approach of their Fe(III) complexes to the oxy-myoglobin heme plane. Importantly, in contrast to the Fe(III) complexes of the clinically trialed thiosemicarbazones Triapine, COTI-2, and DpC, the Fe(III) complexes of PPTP4c4mT and PPTP4c4mSe did not induce detrimental oxy-myoglobin oxidation. Furthermore, PPTP4c4mSe demonstrated more potent antiproliferative activity than the homologous thiosemicarbazone, PPTP4c4mT, with their selectivity being superior or similar, respectively, to the clinically trialed thiosemicarbazone, COTI-2. An advantageous property of the selenosemicarbazone Zn(II) complexes relative to their thiosemicarbazone analogues was their greater transmetalation to Cu(II) complexes in lysosomes. This latter effect probably promoted their antiproliferative activity. Both ligands down-regulated multiple key receptors that display inter-receptor cooperation that leads to aggressive and resistant breast cancer.
- Published
- 2024
- Full Text
- View/download PDF