4 results on '"tetrahedrites"'
Search Results
2. The Effect of Te Substitution for Sb on Thermoelectric Properties of Tetrahedrite.
- Author
-
Lu, Xu and Morelli, Donald
- Subjects
TELLURIUM ,SUBSTITUTION reactions ,ANTIMONY ,THERMOELECTRIC materials ,TEMPERATURE effect ,THERMOELECTRIC power ,THERMAL conductivity - Abstract
We present the study of the effect of Te substitution on the thermoelectric properties for Sb in CuSbTeS tetrahedrite compounds with x ranging from 0.2 to 1.5 in the temperature range of room temperature to 723 K. Powder x-ray diffraction and electron microscopy results indicate a successful homogenous substitution without the alteration of the crystal structure or the introduction of secondary phases. Thermoelectric property measurements show that the excess electrons from Te during the substitution fill the unoccupied levels near the top of the valence bands in pure CuSbS compound, moving the Fermi level closer to the top of the valence bands. This leads to an enhancement in thermopower but also to an increase in electrical resistivity. Overall, the reduction in total thermal conductivity gives rise to improved ZT values in all substituted samples. The highest ZT value obtained in this study is 0.92 at 723 K for x = 1, which is comparable to that of other p-type bulk thermoelectric materials. [ABSTRACT FROM AUTHOR]
- Published
- 2014
- Full Text
- View/download PDF
3. Fast and scalable preparation of tetrahedrite for thermoelectrics via glass crystallization
- Author
-
Annie Pradel, Gaëlle Delaizir, Julie Bourgon, C. Godart, Elsa B. Lopes, Bertrand Lenoir, Andrea Piarristeguy, Jean-Baptiste Vaney, Manuel F. C. Pereira, António Pereira Gonçalves, Eric Alleno, Judith Monnier, Instituto Superior Técnico Universidade de Lisboa (C2TN), Institut de Chimie et des Matériaux Paris-Est (ICMPE), Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), Institut Jean Lamour (IJL), Institut de Chimie du CNRS (INC)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM ICMMM), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut de Chimie du CNRS (INC), Axe 3 : organisation structurale multiéchelle des matériaux (SPCTS-AXE3), Science des Procédés Céramiques et de Traitements de Surface (SPCTS), Institut des Procédés Appliqués aux Matériaux (IPAM), Université de Limoges (UNILIM)-Université de Limoges (UNILIM)-Ecole Nationale Supérieure de Céramique Industrielle (ENSCI)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Limoges (UNILIM)-Institut des Procédés Appliqués aux Matériaux (IPAM), Université de Limoges (UNILIM)-Université de Limoges (UNILIM)-Ecole Nationale Supérieure de Céramique Industrielle (ENSCI)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Limoges (UNILIM), Centro de Recursos Naturais e Ambiente (CERENA), Instituto Superior Técnico, Universidade Técnica de Lisboa (IST), Projet ANR, ANR-11-PRGE-0010,VTG,Verres et vitrocéramiques de chalcogénures en tant que matériaux thermoélectriques pour des applications autour de l'ambiante(2011), Institut de Chimie du CNRS (INC)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS), Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Université de Limoges (UNILIM)-Ecole Nationale Supérieure de Céramique Industrielle (ENSCI)-Institut des Procédés Appliqués aux Matériaux (IPAM), Université de Limoges (UNILIM)-Université de Limoges (UNILIM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Limoges (UNILIM)-Ecole Nationale Supérieure de Céramique Industrielle (ENSCI)-Institut des Procédés Appliqués aux Matériaux (IPAM), and Université de Limoges (UNILIM)-Université de Limoges (UNILIM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Materials science ,Glass ceramics ,Analytical chemistry ,chemistry.chemical_element ,02 engineering and technology ,engineering.material ,010402 general chemistry ,01 natural sciences ,law.invention ,Bismuth ,Antimony ,Thermoelectric manufacturing ,law ,Seebeck coefficient ,Materials Chemistry ,Crystallization ,Waste heat recovery ,Mechanical Engineering ,Tetrahedrite ,Metallurgy ,Metals and Alloys ,Low-cost thermoelectric materials ,021001 nanoscience & nanotechnology ,Thermoelectric materials ,Copper ,Tetrahedrites ,0104 chemical sciences ,chemistry ,Mechanics of Materials ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,engineering ,Melt spinning ,0210 nano-technology - Abstract
A Cu 12 Sb 3.6 Bi 0.4 S 10 Se 3 glass was prepared by melt spinning and crystallized by heat treatments at selected temperatures, the total preparation procedure taking less than one day. The sample characterization by powder X-ray diffraction, scanning and transmission electron microscopy complemented with EDS indicate the formation of compact materials, with a tetrahedrite relative weight fraction higher than 90% when treated at temperatures close to the crystallization peaks (∼200° C). Selenium enters the tetrahedrite structure, while bismuth precipitates in submicron and nanosized spherical shape phases depleted in copper and enriched in antimony, sulfur and selenium (when compared with the matrix composition). The characterization of electrical transport properties (electrical resistivity and Seebeck coefficient) indicate a behavior similar to that obtained by other methods on Cu 12 Sb 4 S 13 , with a maximum power factor of ∼400 μW/K 2 m at room temperature.
- Published
- 2016
- Full Text
- View/download PDF
4. Mechanosynthesis and Thermoelectric Properties of Fe, Zn, and Cd-Doped P-Type Tetrahedrite: Cu 12-x M x Sb 4 S 13.
- Author
-
López Cota, Francisco Arturo, Díaz-Guillén, José Alonso, Juan Dura, Oscar, López de la Torre, Marco Antonio, Rodríguez-Hernández, Joelis, and Fernández Fuentes, Antonio
- Subjects
- *
MECHANICAL alloying , *ELECTRIC conductivity , *THERMOELECTRIC materials , *SEEBECK coefficient , *THERMAL conductivity , *MECHANICAL properties of condensed matter , *ANTIMONY - Abstract
This contribution deals with the mechanochemical synthesis, characterization, and thermoelectric properties of tetrahedrite-based materials, Cu12-xMxSb4S13 (M = Fe2+, Zn2+, Cd2+; x = 0, 1.5, 2). High-energy mechanical milling allows obtaining pristine and substituted tetrahedrites, after short milling under ambient conditions, of stoichiometric mixtures of the corresponding commercially available binary sulfides, i.e., Cu2S, CuS, Sb2S3, and MS (M = Fe2+, Zn2+, Cd2+). All the target materials but those containing Cd were obtained as single-phase products; some admixture of a hydrated cadmium sulfate was also identified by XRD as a by-product when synthesizing Cu10Cd2Sb4S13. The as-obtained products were thermally stable when firing in argon up to a temperature of 350–400 °C. Overall, the substitution of Cu(II) by Fe(II), Zn(II), or Cd(II) reduces tetrahedrites' thermal and electrical conductivities but increases the Seebeck coefficient. Unfortunately, the values of the thermoelectric figure of merit obtained in this study are in general lower than those found in the literature for similar samples obtained by other powder processing methods; slight compositional changes, undetected secondary phases, and/or deficient sintering might account for some of these discrepancies. [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.