1. Pharmacological applications and plant stimulation under sea water stress of biosynthesis bimetallic ZnO/MgO NPs
- Author
-
Samy Selim, Mohammed S. Almuhayawi, Mohammed H. Alruhaili, Muyassar K. Tarabulsi, Amna A. Saddiq, Mohammed Yagoub Mohammed Elamir, Mohamed A. Amin, and Soad K. Al Jaouni
- Subjects
ZnO/MgO NPs ,Antimicrobial ,Green synthesis ,Application ,Sea water stress ,Medicine ,Science - Abstract
Abstract The uniqueness and novelty of this study lies in the ability of Mentha longifolia leaves extract (MLLE) to synthesize bimetallic NPs (NPs) of zinc oxide and magnesium oxide as nanocomposite (ZnO/MgO NPs) for the first time. Medicinal plants extracts are a more environmentally friendly method of creating NPs than physical or chemical methods. The specific objectives of the research were employed this nanocomposite compared to plant extract as antibacterial, anti-diabetic, antioxidant agents. Also, the possibility of using this nanocomposite as plant stimulator for reducing saline water stress on economic plants to cope with the scarcity of freshwater in the agricultural sector. In comparison to nanocomposite, MLLE exhibited high inhibition zones 28 ± 0.1, 26 ± 0.2, 26 ± 0.1, 25 ± 0.2, 25 ± 0.1 and 24 ± 0.1 mm in medium inoculated by E. faecalis, E. coli, S. typh, M. circinelloid C. albicans, and S. aureus, respectively. It was shown from the DPPH data that ZnO/MgO NPs’ IC50 value (52.55 ± 0.98 µg/mL) was lower than the extract’s (299.27 ± 1.59 µg/mL) when compared to ascorbic (195.15 ± 1.63 µg/mL). Compared to acarbose, ZnO/MgO NPs exhibited superior activity against α-Amylase inhibition percentage, as evidenced by their IC50 value of 117.02 ± 0.56 µg/mL. In contrast to ZnO/MgO NPs, acarbose had a lower IC50 value of 22.15 ± 0.76 µg/mL. ZnO/MgO NPs were added to the soil cultivated by cucumber plants (A pots experiment) at quantities of 0, 200, and 400 mg/kg. Bimetallic ZnO/MgO NPs, particularly at 200 ppm, improved the shoot and root lengths and fresh weight of shoot, but they also seemed to reduce the level stress indicator of MDA, H2O2, and antioxidant enzymes (peroxidase and polyphenol oxidase). As a result, ZnO/MgO NPs may be employed as a unique approach to boost plant growth under salinity stress.
- Published
- 2025
- Full Text
- View/download PDF