45 results on '"Malbrunot C."'
Search Results
2. Experimental perspectives on the matter–antimatter asymmetry puzzle: developments in electron EDM and H¯ experiments.
- Author
-
Comparat, D., Malbrunot, C., Malbrunot-Ettenauer, S., Widmann, E., and Yzombard, P.
- Subjects
- *
ANTIMATTER , *IONS , *ELECTRONS , *ANTIHYDROGEN , *ELECTRIC dipole moments - Abstract
In the search for clues to the matter–antimatter puzzle, experiments with atoms or molecules play a particular role. These systems allow measurements with very high precision, as demonstrated by the unprecedented limits down to 10−30 e cm on electron EDM using molecular ions, and relative measurements at the level of 10−12 in spectroscopy of antihydrogen atoms. Building on these impressive measurements, new experimental directions offer potential for drastic improvements. We review here some of the new perspectives in those fields and their associated prospects for new physics searches. This article is part of the theme issue 'The particle-gravity frontier'. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
3. Hyperfine spectroscopy of hydrogen and antihydrogen in ASACUSA
- Author
-
Widmann, E., Amsler, C., Arguedas Cuendis, S., Breuker, H., Diermaier, M., Dupré, P., Evans, C., Fleck, M., Gligorova, A., Higaki, H., Kanai, Y., Kolbinger, B., Kuroda, N., Leali, M., Leite, A. M. M., Mäckel, V., Malbrunot, C., Mascagna, V., Massiczek, O., Matsuda, Y., Murtagh, D. J., Nagata, Y., Nanda, A., Phan, D., Sauerzopf, C., Simon, M. C., Tajima, M., Spitzer, H., Strube, M., Ulmer, S., Venturelli, L., Wiesinger, M., Yamazaki, Y., and Zmeskal, J.
- Published
- 2018
- Full Text
- View/download PDF
4. Towards measuring the ground state hyperfine splitting of antihydrogen – a progress report
- Author
-
Sauerzopf, C., Capon, A. A., Diermaier, M., Dupré, P., Higashi, Y., Kaga, C., Kolbinger, B., Leali, M., Lehner, S., Rizzini, E. Lodi, Malbrunot, C., Mascagna, V., Massiczek, O., Murtagh, D. J., Nagata, Y., Radics, B., Simon, M. C., Suzuki, K., Tajima, M., Ulmer, S., Vamosi, S., Gorp, S. van, Zmeskal, J., Breuker, H., Higaki, H., Kanai, Y., Kuroda, N., Matsuda, Y., Venturelli, L., Widmann, E., and Yamazaki, Y.
- Published
- 2016
- Full Text
- View/download PDF
5. The ASACUSA CUSP: an antihydrogen experiment
- Author
-
Kuroda, N., Ulmer, S., Murtagh, D. J., Van Gorp, S., Nagata, Y., Diermaier, M., Federmann, S., Leali, M., Malbrunot, C., Mascagna, V., Massiczek, O., Michishio, K., Mizutani, T., Mohri, A., Nagahama, H., Ohtsuka, M., Radics, B., Sakurai, S., Sauerzopf, C., Suzuki, K., Tajima, M., Torii, H. A., Venturelli, L., Wünschek, B., Zmeskal, J., Zurlo, N., Higaki, H., Kanai, Y., Rizzini, E. Lodi, Nagashima, Y., Matsuda, Y., Widmann, E., and Yamazaki, Y.
- Published
- 2015
- Full Text
- View/download PDF
6. The AEgIS experiment
- Author
-
Testera, G., Aghion, S., Amsler, C., Ariga, A., Ariga, T., Belov, A., Bonomi, G., Braunig, P., Bremer, J., Brusa, R., Cabaret, L., Caccia, M., Caravita, R., Castelli, F., Cerchiari, G., Chlouba, K., Cialdi, S., Comparat, D., Consolati, G., Curreli, S., Demetrio, A., Derking, H., Noto, L. Di, Doser, M., Dudarev, A., Ereditato, A., Ferragut, R., Fontana, A., Gerber, S., Giammarchi, M., Gligorova, A., Gninenko, S., Haider, S., Hogan, S., Holmestad, H., Huse, T., Jordan, E. J., Kawada, J., Kellerbauer, A., Kimura, M., Krasnický, D., Lagomarsino, V., Lehner, S., Malbrunot, C., Mariazzi, S., Matveev, V., Mazzotta, Z., Nebbia, G., Nedelec, P., Oberthaler, M., Pacifico, N., Penasa, L., Petracek, V., Pistillo, C., Prelz, F., Prevedelli, M., Ravelli, L., Riccardi, C., Røhne, O. M., Rosenberger, S., Rotondi, A., Sandaker, H., Santoro, R., Scampoli, P., Semeria, L., Simon, M., Spacek, M., Storey, J., Strojek, I. M., Subieta, M., Widmann, E., Yzombard, P., Zavatarelli, S., Zmeskal, J., and (AEgIS Collaboration)
- Published
- 2015
- Full Text
- View/download PDF
7. Emulsion detectors for the antihydrogen detection in AEgIS
- Author
-
Pistillo, C., Aghion, S., Amsler, C., Ariga, A., Ariga, T., Belov, A., Bonomi, G., Bräunig, P., Bremer, J., Brusa, R. S., Cabaret, L., Caccia, M., Caravita, R., Castelli, F., Cerchiari, G., Chlouba, K., Cialdi, S., Comparat, D., Consolati, G., Demetrio, A., Derking, H., Di Noto, L., Doser, M., Dudarev, A., Ereditato, A., Ferragut, R., Fontana, A., Gerber, S., Giammarchi, M., Gligorova, A., Gninenko, S., Haider, S., Hogan, S., Holmestad, H., Huse, T., Jordan, E. J., Kawada, J., Kellerbauer, A., Kimura, M., Krasnický, D., Lagomarsino, V., Lehner, S., Malbrunot, C., Mariazzi, S., Matveev, V., Mazzotta, Z., Nebbia, G., Nédélec, P., Oberthaler, M., Pacifico, N., Penasa, L., Petráček, V., Prelz, F., Prevedelli, M., Ravelli, L., Riccardi, C., Røhne, O., Rosenberger, S., Rotondi, A., Sandaker, H., Santoro, R., Scampoli, P., Simon, M., Špaček, M., Storey, J., Strojek, I. M., Subieta, M., Testera, G., Widmann, E., Yzombard, P., Zavatarelli, S., and Zmeskal, J.
- Published
- 2015
- Full Text
- View/download PDF
8. Numerical simulations of hyperfine transitions of antihydrogen
- Author
-
Kolbinger, B., Capon, A., Diermaier, M., Lehner, S., Malbrunot, C., Massiczek, O., Sauerzopf, C., Simon, M. C., and Widmann, E.
- Published
- 2015
- Full Text
- View/download PDF
9. An atomic hydrogen beam to test ASACUSA’s apparatus for antihydrogen spectroscopy
- Author
-
Diermaier, M., Caradonna, P., Kolbinger, B., Malbrunot, C., Massiczek, O., Sauerzopf, C., Simon, M. C., Wolf, M., Zmeskal, J., and Widmann, E.
- Published
- 2015
- Full Text
- View/download PDF
10. Pulsed Production of Antihydrogen in AEgIS
- Author
-
Zurlo, N., Amsler, C., Antonello, M., Belov, A., Bonomi, G., Brusa, R. S., Caccia, M., Camper, A., Caravita, R., Castelli, F., Cheinet, P., Comparat, D., Consolati, G., Demetrio, A., Di Noto, L., Doser, M., Fani, M., Ferragut, R., Fesel, J., Gerber, S., Giammarchi, M., Gligorova, A., Gloggler, L. T., Guatieri, F., Haider, S., Hinterberger, A., Kellerbauer, A., Khalidova, O., Krasnicky, D., Lagomarsino, V., Malbrunot, C., Mariazzi, S., Matveev, V., Muller, R., Nebbia, G., Nedelec, P., Nowak, L., Oberthaler, M., Oswald, E., Pagano, D., Penasa, L., Petracek, V., Povolo, L., Prelz, F., Prevedelli, M., Rienacker, B., Rohne, O. M., Rotondi, A., Sandaker, H., Santoro, R., Testera, G., Tietje, I. C., Toso, V., Wolz, T., Yzombard, P., and Zimmer, C.
- Subjects
Antihydrogen ,antiprotons ,Accelerators and Storage Rings ,Antihydrogen, antiprotons - Abstract
Cold antihydrogen atoms are a powerful tool to probe the validity of fundamental physics laws, and it's clear that colder atoms, generally speaking, allow an increased level of precision. After the first production of cold antihydrogen ($\bar{H}$) in 2002, experimental efforts have progressed continuously (trapping, beam formation, spectroscopy), with competitive results already achieved by adapting to cold antiatoms techniques previously well developed for ordinary atoms. Unfortunately, the number of $\bar{H}$ atoms that can be produced in dedicated experiments is many orders of magnitude smaller than available hydrogen atoms, which are at hand in large amount, so the development of novel techniques that allow the production of $\bar{H}$ with well defined conditions (and possibly control its formation time and energy levels) is essential to improve the sensitivity of the methods applied by the different experiments. We present here the first experimental results concerning the production of $\bar{H}$ in a pulsed mode where the time when 90\% of the atoms are produced is known with an uncertainty of around 250~ns. The pulsed $\bar{H}$ source is generated by the charge-exchange reaction between Rydberg positronium atoms ($Ps$) and trapped antiprotons ($\bar{p}$), cooled and manipulated in an electromagnetic trap: $$ \bar{ p}+Ps^* \rightarrow \bar{H}^* + e^- $$ where Rydberg positronium atoms, in turn, are produced through the implantation of a pulsed positron beam into a mesoporous silica target, and are excited by two subsequent laser pulses, the first to $n=3$, the second to the needed Rydberg level ($n \simeq 17$). The pulsed production allows the control of the antihydrogen temperature, and facilitates the tunability of the Rydberg states, their de-excitation by pulsed lasers and the manipulation through electric field gradients. In fact, the production of pulsed antihydrogen is a major milestone in the AEgIS experiment to perform direct measurements of the validity of the Weak Equivalence Principle for antimatter.
- Published
- 2022
11. The AEgIS Experiment: Measuring the Gravitational Interaction of Antimatter
- Author
-
Knecht, A., Aghion, S., Ahlén, O., Amsler, C., Ariga, A., Ariga, T., Belov, A. S., Bonomi, G., Bräunig, P., Bremer, J., Brusa, R. S., Cabaret, L., Canali, C., Caravita, R., Castelli, F., Cerchiari, G., Cialdi, S., Comparat, D., Consolati, G., Derking, J. H., Domizio, S. Di, Noto, L. Di, Doser, M., Dudarev, A., Ereditato, A., Ferragut, R., Fontana, A., Genova, P., Giammarchi, M., Gligorova, A., Gninenko, S. N., Haider, S., Hogan, S. D., Huse, T., Jordan, E., Jørgensen, L. V., Kaltenbacher, T., Kawada, J., Kellerbauer, A., Kimura, M., Krasnický, D., Lagomarsino, V., Lehner, S., Malbrunot, C., Mariazzi, S., Matveev, V. A., Merkt, F., Moia, F., Nebbia, G., Nédélec, P., Oberthaler, M. K., Pacifico, N., Petráček, V., Pistillo, C., Prelz, F., Prevedelli, M., Regenfus, C., Riccardi, C., Røhne, O., Rotondi, A., Sandaker, H., Scampoli, P., Storey, J., Subieta Vasquez, M. A., Špaček, M., Testera, G., Trezzi, D., Vaccarone, R., Widmann, E., Zavatarelli, S., and Zmeskal, J.
- Published
- 2014
- Full Text
- View/download PDF
12. Spectroscopy apparatus for the measurement of the hyperfine structure of antihydrogen
- Author
-
Malbrunot, C., Caradonna, P., Diermaier, M., Dilaver, N., Friedreich, S., Kolbinger, B., Lehner, S., Lundmark, R., Massiczek, O., Radics, B., Sauerzopf, C., Simon, M., Widmann, E., Wolf, M., Wünschek, B., and Zmeskal, J.
- Published
- 2014
- Full Text
- View/download PDF
13. Towards a spin polarized antihydrogen beam
- Author
-
Kuroda, N., Ulmer, S., Murtagh, D. J., Van Gorp, S., Nagata, Y., Diermaier, M., Federmann, S., Leali, M., Malbrunot, C., Mascagna, V., Massiczek, O., Michishio, K., Mizutani, T., Mohri, A., Nagahama, H., Ohtsuka, M., Radics, B., Sakurai, S., Sauerzopf, C., Suzuki, K., Tajima, M., Torii, H. A., Venturelli, L., Wünschek, B., Zmeskal, J., Zurlo, N., Higaki, H., Kanai, Y., Lodi-Rizzini, E., Nagashima, Y., Matsuda, Y., Widmann, E., and Yamazaki, Y.
- Published
- 2014
- Full Text
- View/download PDF
14. Measuring the gravitational free-fall of antihydrogen
- Author
-
Storey, J., Aghion, S., Ahlén, O., Amsler, C., Ariga, A., Ariga, T., Belov, A. S., Bonomi, G., Bräunig, P., Bremer, J., S. Brusa, R., Cabaret, L., Canali, C., Caravita, R., Castelli, F., Cerchiari, G., Cialdi, S., Comparat, D., Consolati, G., Derking, J. H., Domizio, S. Di, Noto, L. Di, Doser, M., Dudarev, A., Ereditato, A., Ferragut, R., Fontana, A., Genova, P., Giammarchi, M., Gligorova, A., Gninenko, S. N., Haider, S., Hogan, S. D., Huse, T., Jordan, E., Jørgensen, L. V., Kaltenbacher, T., Kawada, J., Kellerbauer, A., Kimura, M., Knecht, A., Krasnický, D., Lagomarsino, V., Lehner, S., Malbrunot, C., Mariazzi, S., Matveev, V. A., Merkt, F., Moia, F., Nebbia, G., Nédélec, P., Oberthaler, M. K., Pacifico, N., Petráček, V., Pistillo, C., Prelz, F., Prevedelli, M., Regenfus, C., Riccardi, C., Røhne, O., Rotondi, A., Sandaker, H., Scampoli, P., Subieta Vasquez, M. A., Špaček, M., Testera, G., Trezzi, D., Vaccarone, R., Widmann, E., Zavatarelli, S., and Zmeskal, J.
- Published
- 2014
- Full Text
- View/download PDF
15. Control system for ion Penning traps at the AEgIS experiment at CERN
- Author
-
Nowicka, D, Bergmann, B, Bonomi, G, Brusa, R S, Burian, P, Camper, A, Caravita, R, Castelli, F, Cheinet, P, Comparat, D, Consolati, G, Doser, M, Gjersdal, H, Glöggler, L, Graczykowski, Ł, Guatieri, F, Haider, S, Huck, S, Janik, M, Kasprowicz, G, Khatri, G, Kornakov, G, Malbrunot, C, Mariazzi, S, Nebbia, G, Nowak, L, Oswald, E, Pagano, D, Penasa, L, Pospisil, S, Povolo, L, Prelz, F, Rienäcker, B, Røhne, O M, Sandaker, H, Stekl, I, Tefelski, D, Volponi, M, Wolz, T, Zimmer, C, and Zurlo, N
- Subjects
antihydrogen ,History ,Antiproton Decelerator ,CERN ,Detectors and Experimental Techniques ,530 Physik ,ion Penning traps ,Quantum Technology ,AEgIS experiment ,Computer Science Applications ,Education - Abstract
The AEgIS experiment located at the Antiproton Decelerator at CERN aims to measure the gravitational fall of a cold antihydrogen pulsed beam. The precise observation of the antiatoms in the Earth gravitational field requires a controlled production and manipulation of antihydrogen. The neutral antimatter is obtained via a charge exchange reaction between a cold plasma of antiprotons from ELENA decelerator and a pulse of Rydberg positronium atoms. The current custom electronics designed to operate the 5 and 1 T Penning traps are going to be replaced by a control system based on the ARTIQ & Sinara open hardware and software ecosystem. This solution is present in many atomic, molecular and optical physics experiments and devices such as quantum computers. We report the status of the implementation as well as the main features of the new control system.
- Published
- 2022
- Full Text
- View/download PDF
16. CPT and Lorentz symmetry tests with hydrogen using a novel in-beam hyperfine spectroscopy method applicable to antihydrogen experiments.
- Author
-
Nowak, L., Malbrunot, C., Simon, M.C., Amsler, C., Arguedas Cuendis, S., Lahs, S., Lanz, A., Nanda, A., Wiesinger, M., Wolz, T., and Widmann, E.
- Subjects
- *
HYPERFINE coupling , *MAGNETIC fields , *ANTIHYDROGEN , *SPECTROMETRY , *HYDROGEN - Abstract
We present a Rabi-type measurement of two ground-state hydrogen hyperfine transitions performed in two opposite external magnetic field directions. This puts first constraints at the level of ▪ on a set of coefficients of the Standard Model Extension, which were not measured by previous experiments. Moreover, we introduce a novel method, applicable to antihydrogen hyperfine spectroscopy in a beam, that determines the zero-field hyperfine transition frequency from the two transitions measured at the same magnetic field. Our value, ▪, is in agreement with literature at a relative precision of 0.44 ppb. This is the highest precision achieved on hydrogen in a beam, improving over previous results by a factor of 6. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
17. Measurement of the hyperfine structure of antihydrogen in a beam
- Author
-
Widmann, E., Diermaier, M., Juhász, B., Malbrunot, C., Massiczek, O., Sauerzopf, C., Suzuki, K., Wünschek, B., Zmeskal, J., Federmann, S., Kuroda, N., Ulmer, S., and Yamazaki, Y.
- Published
- 2013
- Full Text
- View/download PDF
18. Minimizing plasma temperature for antimatter mixing experiments.
- Author
-
Hunter, E.D., Amsler, C., Breuker, H., Chesnevskaya, S., Costantini, G., Ferragut, R., Giammarchi, M., Gligorova, A., Gosta, G., Higaki, H., Kanai, Y., Killian, C., Kletzl, V., Kraxberger, V., Kuroda, N., Lanz, A., Leali, M., Mäckel, V., Maero, G., and Malbrunot, C.
- Subjects
PLASMA temperature ,ANTIMATTER ,ANTIHYDROGEN ,ANTIPROTONS ,CYCLOTRON radiation - Abstract
The ASACUSA collaboration produces a beam of antihydrogen atoms by mixing pure positron and antiproton plasmas in a strong magnetic field with a double cusp geometry. The positrons cool via cyclotron radiation inside the cryogenic trap. Low positron temperature is essential for increasing the fraction of antihydrogen atoms which reach the ground state prior to exiting the trap. Many experimental groups observe that such plasmas reach equilibrium at a temperature well above the temperature of the surrounding electrodes. This problem is typically attributed to electronic noise and plasma expansion, which heat the plasma. The present work reports anomalous heating far beyond what can be attributed to those two sources. The heating seems to be a result of the axially open trap geometry, which couples the plasma to the external (300 K) environment via microwave radiation. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF
19. Induced THz transitions in Rydberg caesium atoms for application in antihydrogen experiments.
- Author
-
Vieille-Grosjean, M., Dimova, E., Mazzotta, Z., Comparat, D., Wolz, T., and Malbrunot, C.
- Subjects
RYDBERG states ,ANTIHYDROGEN ,CESIUM ,LIGHT sources ,PHOTOIONIZATION ,TERAHERTZ spectroscopy - Abstract
Antihydrogen atoms are produced at CERN in highly excited Rydberg states. However, precision measurements require anti-atoms in ground state. Whereas experiments currently rely on spontaneous emission only, simulations have shown that THz light can be used to stimulate the decay towards ground state and thus increase the number of anti-atoms available for measurements. We review different possibilities at hand to generate light in the THz range required for the purpose of stimulated deexcitation. We demonstrate the effect of a blackbody type light source, which however presents drawbacks for this application including strong photoionization. Further, we report on the first THz transitions in a beam of Rydberg caesium atoms induced by photomixers and conclude with the implications of the results for the antihydrogen case. [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF
20. Antimatter Gravity Measurements with Cold Antihydrogen: the AEgIS Experiment
- Author
-
Doser, M., Amsler, C., Ariga, T., Bonomi, G., Braunig, P., Brusa, R. S., Cabaret, L., Caccia, M., Caravita, R., Castelli, F., Cerchiari, G., Comparat, D., Consolati, G., Demetrio, A., Di Noto, L., Ereditato, A., Evans, C., Ferragut, R., Fesel, J., Fontana, A., Gerber, S., Giammarchi, M., Gligorova, A., Guatieri, F., Haider, S., Holmestad, H., Huse, T., Kellerbauer, A., Krasnicky, D., Lagomarsino, V., Lansonneur, P., Lebrun, P., Malbrunot, C., Mariazzi, S., Matveev, V., Mazzotta, Z., Nebbia, G., Nedelec, P., Oberthaler, M., Pacifico, N., Pagano, D., Penasa, L., Petracek, V., Pistillo, C., Prelz, F., Prevedelli, M., Ravelli, L., Rienaecker, B., Røhne, O. M., Rotondi, A., Sacerdoti, M., Sandaker, H., Santoro, R., Scampoli, P., Smestad, L., Sorrentino, F., Strojek, I. M., Testera, G., Tietje, I. C., Vamosi, S., Widmann, E., Yzombard, P., Zmeskal, J., and Zurlo, N.
- Subjects
Nuclear physics ,Physics ,Gravitation ,Antimatter ,Gravity (chemistry) ,CPT Symetry, Antimatter, Gravity ,CPT Symetry ,Gravity ,Equivalence principle ,Antihydrogen ,Charge exchange - Published
- 2017
- Full Text
- View/download PDF
21. Towards measuring the ground state hyperfine splitting of antihydrogen - a progress report
- Author
-
Sauerzopf, Clemens, Abo, Y., Capon, A., Diermaier, M., Dupré, P., Higashi, Y., Ishikawa, S., Kaga, C., Kolbinger, B., Leali, M., Lehner, S., Malbrunot, C., Mascagna, V., Massiczek, O., Murtag, D. J., Nagata, Y., Radics, B., Simon, M. C., Suzuki, K., Tajima, M., Ulmer, S., Vamosi, S., von Gorp, S., Venturelli, L., Zmeskal, J., Breuker, H., Higaki, H., Kanai, Y., Kuroda, N., Lodi Rizzini, E., Matsuda, Y., Widmann, E., and Yamazaki, Y.
- Subjects
Antiproton Decelerator (AD) ,Physics::Instrumentation and Detectors ,hyperfine structure ,Physics::Atomic Physics ,ASACUSA ,7. Clean energy ,Antihydrogen - Abstract
The matter - anti matter asymmetry observed in the universe today still lacks a quantitative explanation. One possibility that could contribute to the observed state could be a violation of the combined Charge-, Partiy- and Timesymmetries (CPT). To test if the CPT symmetry is broken the ASACUSA collaboration (Atomic Spectroscopy And Collisions Using Slow Antiprotons) at the CERN AD (Antiproton Decelerator) tries to produce a low temperature beam of antihydrogen - the most simple atomic system built only of anti particles. The ground state hyperfine splitting of hydrogen is one of the most precisely determined quantities in physics. Therefore it follows naturally to test CPT invariance by comparing the ground state hyperfine splitting of hydrogen and antihydrogen at zero B field. This contribution will focus on presenting the current state of the fully assembled spectroscopy beamline, including a field-ioniser chamber, a strip-line resonator microwave cavity, a super conducting sextupole magnet and a detector for counting antihydrogen annihilations. We will put a spotlight on the performance of the beamline and on the detection part of the spectrometer. Our spectroscopy apparatus was tested with a beam of cold hydrogen and these tests lead to a measurement of the GS-HFS of hydrogen whose precision is in good agreement with simulation. The newly developed detector is composed of a position sensitive Bismutgermanat (BGO) disc in the centre and a two layer hodoscope made of plastic scintillators that is read via silicon photo multipliers (SiPM) with self developed frontend electronics. In addition, our first preliminary results of the detector performance with the fully assembled beamline from the 2014 beamtime at CERN are discussed.
- Published
- 2015
- Full Text
- View/download PDF
22. Recent Developments from ASACUSA on Antihydrogen Detection.
- Author
-
Bühler, P., Kolbinger, B., Amsler, C., Breuker, H., Diermaier, M., Dupré, P., Fleck, M., Gligorova, A., Higaki, H., Kanai, Y., Kobayashi, T., Leali, M., Mäckel, V., Malbrunot, C., Mascagna, V., Massiczek, O., Matsuda, Y., Murtagh, D.J., Nagata, Y., and Sauerzopf, C.
- Subjects
PROTON & antiproton annihilation ,ANTIHYDROGEN ,QUANTUM field theory ,METAPHYSICAL cosmology ,MACHINE learning - Abstract
The ASACUSA Collaboration at CERNs Antiproton Decelerator aims to measure the ground state hyperfine splitting of antihydrogen with high precision to test the fundamental symmetry of CPT (combination of charge conjugation, parity transformation, and time reversal). For this purpose an antihydrogen detector has been developed. Its task is to count the arriving antihydrogen atoms and therefore distinguish backgroundevents (mainly cosmics) from antiproton annihilations originating from antihydrogen atoms which are produced only in small amounts. A central BGO crystal disk with position sensitive read-out detects the annihilation and a surrounding two-layered hodoscope is used for tracking charged secondaries. The hodoscope has been recently upgraded to allow precise vertex reconstruction. A machine learning analysis based on measured antiproton annihilations and cosmic rays has been developed to identify antihydrogen events. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF
23. Hyperfine spectroscopy of hydrogen and antihydrogen in ASACUSA.
- Author
-
Widmann, E., Amsler, C., Arguedas Cuendis, S., Breuker, H., Diermaier, M., Dupré, P., Evans, C., Fleck, M., Gligorova, A., Higaki, H., Kanai, Y., Kolbinger, B., Kuroda, N., Leali, M., Leite, A. M. M., Mäckel, V., Malbrunot, C., Mascagna, V., Massiczek, O., and Matsuda, Y.
- Subjects
ANTIHYDROGEN ,ATOMIC beams ,SPECTROMETRY ,HYPERFINE structure ,UNITS of measurement ,HYDROGEN - Abstract
The ASACUSA collaboration at the Antiproton Decelerator of CERN aims at a precise measurement of the antihydrogen ground-state hyperfine structure as a test of the fundamental CPT symmetry. A beam of antihydrogen atoms is formed in a CUSP trap, undergoes Rabi-type spectroscopy and is detected downstream in a dedicated antihydrogen detector. In parallel measurements using a polarized hydrogen beam are being performed to commission the spectroscopy apparatus and to perform measurements of parameters of the Standard Model Extension (SME). The current status of antihydrogen spectroscopy is reviewed and progress of ASACUSA is presented. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF
24. Experiments with low-energy antimatter
- Author
-
Aghion, S., Gerber, S., Mariazzi, S., Malbrunot, C., Eidelman, S., Caravita, R., Demetrio, A., Zavatarelli, S., Di Noto, L., Storey, James William, Giardina, G., Rotondi, A., Petracek, V., Fontana, A., Testera, G., Amsler, Claude, Oberthaler, M., Comparat, D., Rosenberger, S., Brusa, R.S., Bonomi, G., Nedelec, P., Doser, M., Consolati, G., Lehner, S., Prelz, F., Riccardi, C., Cabaret, L., Zmeskal, J., Castelli, F., Derking, H., Chlouba, K., Jordan, E. J., Pacifico, N., Widmann, E., Bremer, J., Sacerdoti, M., Mandaglio, G., Hogan, S., Giammarchi, M., Ariga, Akitaka, Gligorova, A., Scampoli, Paola, Pistillo, Ciro, Strojek, I. M., Gninenko, S., Simon, M., Nebbia, G., Santoro, R., Kimura, Mitsuhiro, Cerchiari, G., Kellerbauer, A., Penasa, L., Kawada, Jiro, Venanzoni, G., Battaglieri, M., Cialdi, S., Dudarev, A., Prevedelli, M., Ariga, Tomoko, Matveev, V., Yzombard, P., Caccia, M., Krasnicky, D., Sandaker, H., Røhne, O.M., Holmestad, H., Bräunig, P., Ereditato, Antonio, Mazzotta, Z., Belov, A., Subieta, M., Ferragut, R., Lagomarsino, V., Ravelli, L., Haider, S., Huse, T., Spacek, M., Institut de Physique Nucléaire de Lyon (IPNL), Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), G., Giardina, G., Consolati, S., Aghion, C., Amsler, A., Ariga, T., Ariga, A., Belov, G., Bonomi, P., Bräunig, J., Bremer, R. S., Brusa, L., Cabaret, M., Caccia, R., Caravita, F., Castelli, G., Cerchiari, K., Chlouba, S., Cialdi, D., Comparat, A., Demetrio, H., Derking, L., Di Noto, M., Doser, A., Dudarev, A., Ereditato, R., Ferragut, A., Fontana, S., Gerber, M., Giammarchi, A., Gligorova, S., Gninenko, S., Haider, S., Hogan, H., Holmestad, T., Huse, E. J., Jordan, J., Kawada, A., Kellerbauer, M., Kimura, D., Krasnicky, V., Lagomarsino, S., Lehner, C., Malbrunot, S., Mariazzi, V., Matveev, Z., Mazzotta, G., Nebbia, P., Nedelec, M., Oberthaler, N., Pacifico, L., Penasa, V., Petracek, C., Pistillo, F., Prelz, M., Prevedelli, L., Ravelli, C., Riccardi, O. M., Røhne, S., Rosenberger, A., Rotondi, M., Sacerdoti, H., Sandaker, R., Santoro, Scampoli, Paola, M., Simon, M., Spacek, J., Storey, I. M., Strojek, M., Subieta, G., Testera, E., Widmann, P., Yzombard, S., Zavatarelli, J., Zmeskal, S., Eidelman, G., Venanzoni, M., Battaglieri, and G., Mandaglio
- Subjects
Physics ,Large Hadron Collider ,530 Physics ,QC1-999 ,PLASMAS ,ANTIHYDROGEN BEAM ,AEGIS EXPERIMENT ,PENNING TRAP ,GRAVITY ,SILICA ,ATOMS ,Nuclear physics ,Antiproton Decelerator ,Physics and Astronomy (all) ,Low energy ,Antimatter ,Systems engineering ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,Antihydrogen ,GeneralLiterature_REFERENCE(e.g.,dictionaries,encyclopedias,glossaries) ,Particle Physics - Experiment ,ComputingMilieux_MISCELLANEOUS - Abstract
Investigations on antimatter allow us to shed light on fundamental issues of contemporary physics. The only antiatom presently available, antihydrogen, is produced making use of the Antiproton Decelerator (AD) facility at CERN. International collaborations currently on the floor (ALPHA, ASACUSA and ATRAP) have succeeded in producing antihydrogen and are now involved in its confinement and manipulation. The AEGIS experiment is currently completing the commissioning of the apparatus which will generate and manipulate antiatoms. The present paper, after a report on the main results achieved with antihydrogen physics, gives an overview of the AEGIS experiment, describes its current status and discusses its first target.
- Published
- 2015
- Full Text
- View/download PDF
25. The ASACUSA antihydrogen and hydrogen program: results and prospects.
- Author
-
Malbrunot, C., Amsler, C., Cuendis, S. Arguedas, Breuker, H., Dupre, P., Fleck, M., Higaki, H., Kanai, Y., Kolbinger, B., Kuroda, N., Leali, M., Mäckel, V., Mascagna, V., Massiczek, O., Matsuda, Y., Nagata, Y., Simon, M. C., Spitzer, H., Tajima, M., and Ulmer, S.
- Subjects
- *
ANTIHYDROGEN , *GROUND state energy , *ATOMIC spectroscopy - Abstract
The goal of the ASACUSA-CUSP collaboration at the Antiproton Decelerator of CERN is to measure the ground-state hyperfine splitting of antihydrogen using an atomic spectroscopy beamline. A milestone was achieved in 2012 through the detection of 80 antihydrogen atoms 2.7m away from their production region. This was the first observation of 'cold' antihydrogen in a magnetic field free region. In parallel to the progress on the antihydrogen production, the spectroscopy beamline was tested with a source of hydrogen. This led to a measurement at a relative precision of 2.7 Ã--10-9 which constitutes the most precise measurement of the hydrogen hyperfine splitting in a beam. Further measurements with an upgraded hydrogen apparatus are motivated by CPT and Lorentz violation tests in the framework of the Standard Model Extension. Unlike for hydrogen, the antihydrogen experiment is complicated by the difficulty of synthesizing enough cold antiatoms in the ground state. The first antihydrogen quantum states scan at the entrance of the spectroscopy apparatus was realized in 2016 and is presented here. The prospects for a ppm measurement are also discussed. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF
26. Injection and capture of antiprotons in a Penning–Malmberg trap using a drift tube accelerator and degrader foil.
- Author
-
Amsler, C., Breuker, H., Bumbar, M., Chesnevskaya, S., Costantini, G., Ferragut, R., Giammarchi, M., Gligorova, A., Gosta, G., Higaki, H., Hori, M., Hunter, E.D., Killian, C., Kraxberger, V., Kuroda, N., Lanz, A., Leali, M., Maero, G., Malbrunot, C., and Mascagna, V.
- Subjects
- *
ANTIPROTONS , *TUBES , *KINETIC energy , *ANTIHYDROGEN , *ALUMINUM foil , *QUADRUPOLES - Abstract
The Antiproton Decelerator (AD) at CERN provides antiproton bunches with a kinetic energy of 5.3 MeV. The Extra-Low ENergy Antiproton ring at CERN, commissioned at the AD in 2018, now supplies a bunch of electron-cooled antiprotons at a fixed energy of 100 keV. The MUSASHI antiproton trap was upgraded by replacing the radio-frequency quadrupole decelerator with a pulsed drift tube to re-accelerate antiprotons and optimize the injection energy into the degrader foils. By increasing the beam energy to 119 keV, a cooled antiproton accumulation efficiency of (26 ± 6) % was achieved. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
27. Testing the Weak Equivalence Principle with an antimatter beam at CERN
- Author
-
L. Ravelli, Patrick Nedelec, Davide Pagano, N. Pacifico, Sebastiano Mariazzi, Jiro Kawada, L. Di Noto, Johann Zmeskal, Luca Penasa, I. M. Strojek, S. Rosenberger, Massimo Caccia, Eberhard Widmann, V. Lagomarsino, Giovanni Consolati, H. Derking, Germano Bonomi, M. Sacerdoti, S. Haider, Romualdo Santoro, M. Subieta, Roberto S. Brusa, Ole Røhne, Paola Scampoli, James William Storey, M. Spacek, V. Petracek, M. Kimura, Marco Prevedelli, Claude Amsler, K. Chlouba, Alberto Rotondi, Tomoko Ariga, F. Prelz, D. Krasnicky, A. Demetrio, Heidi Sandaker, Alexey Dudarev, Giovanni Cerchiari, M. Oberthaler, Daniel Comparat, Adriano Fontana, Angela Gligorova, Chloé Malbrunot, L. Cabaret, P. Yzombard, Marco Giammarchi, Antonio Ereditato, T. Huse, Cristina Riccardi, G. Testera, J. Bremer, Z. Mazzotta, Simone Cialdi, Sandra Zavatarelli, E. Jordan, Felice Sorrentino, Alban Kellerbauer, A. S. Belov, Akitaka Ariga, Fabrizio Castelli, Michael Doser, H. Holmestad, Sebastian Gerber, P. Bräunig, S. N. Gninenko, C. Pistillo, Ruggero Caravita, Stefano Aghion, V. A. Matveev, Sebastian Lehner, Rafael Ferragut, G. Nebbia, Kimura, M, Aghion, S, Amsler, C, Ariga, A, Ariga, T, Belov, A, Bonomi, G, Bräunig, P, Bremer, J, Brusa, R S, Cabaret, L, Caccia, M, Caravita, R, Castelli, F, Cerchiari, G, Chlouba, K, Cialdi, S, Comparat, D, Consolati, G, Demetrio, A, Derking, H, Noto, L Di, Doser, M, Dudarev, A, Ereditato, A, Ferragut, R, Fontana, A, Gerber, S, Giammarchi, M, Gligorova, A, Gninenko, S, Haider, S, Holmestad, H, Huse, T, Jordan, E J, Kawada, J, Kellerbauer, A, Krasnicky, D, Lagomarsino, V, Lehner, S, Malbrunot, C, Mariazzi, S, Matveev, V, Mazzotta, Z, Nebbia, G, Nedelec, P, Oberthaler, M, Pacifico, N, Pagano, D, Penasa, L, Petracek, V, Pistillo, C, Prelz, F, Prevedelli, M, Ravelli, L, Riccardi, C, Røhne, O M, Rosenberger, S, Rotondi, A, Sacerdoti, M, Sandaker, H, Santoro, R, Scampoli, P, Sorrentino, F, Spacek, M, Strojek, I M, Storey, J, Subieta, M, Testera, G, Widmann, E, Yzombard, P, Zavatarelli, S, Zmeskal, J, Kimura, M., Aghion, S., Amsler, C., Ariga, A., Ariga, T., Belov, A., Bonomi, G., Bräunig, P., Bremer, J., Brusa, R. S., Cabaret, L., Caccia, M., Caravita, R., Castelli, F., Cerchiari, G., Chlouba, K., Cialdi, S., Comparat, D., Consolati, G., Demetrio, A., Derking, H., Noto, L. Di, Doser, M., Dudarev, A., Ereditato, A., Ferragut, R., Fontana, A., Gerber, S., Giammarchi, M., Gligorova, A., Gninenko, S., Haider, S., Holmestad, H., Huse, T., Jordan, E. J., Kawada, J., Kellerbauer, A., Krasnicky, D., Lagomarsino, V., Lehner, S., Malbrunot, C., Mariazzi, S., Matveev, V., Mazzotta, Z., Nebbia, G., Nedelec, P., Oberthaler, M., Pacifico, N., Pagano, D., Penasa, L., Petracek, V., Pistillo, C., Prelz, F., Prevedelli, M., Ravelli, L., Riccardi, C., Røhne, O. M., Rosenberger, S., Rotondi, A., Sacerdoti, M., Sandaker, H., Santoro, R., Scampoli, Paola, Sorrentino, F., Spacek, M., Strojek, I. M., Storey, J., Subieta, M., Testera, G., Widmann, E., Yzombard, P., Zavatarelli, S., Zmeskal, J., Laboratoire Aimé Cotton (LAC), Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11)-École normale supérieure - Cachan (ENS Cachan), Institut de Physique Nucléaire de Lyon (IPNL), Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), and AEGIS
- Subjects
Photographic emulsions ,Atoms ,History ,Particle physics ,Physics::General Physics ,530 Physics ,Nuclear emulsions ,Gravitational acceleration ,7. Clean energy ,Education ,Nuclear physics ,Physics and Astronomy (all) ,Positron ,NUCLEAR-EMULSIONS ,Gravitational accelerations ,Physics and Astronomy (all), NUCLEAR-EMULSIONS ,AEGIS EXPERIMENT ,ANTIPROTONS ,POSITRONIUM ,SYSTEM ,[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex] ,Physics::Atomic and Molecular Clusters ,Vertical displacements ,Nuclear emulsion ,Physics::Atomic Physics ,particle physics, gravity ,Antihydrogen ,Gravitational forces ,Stark accelerator ,Physics ,Large Hadron Collider ,Emulsification ,Tracking (position) ,Antihydrogen atoms ,Fundamental laws ,Weak equivalence principle ,Detector ,Computer Science Applications ,Antiproton ,Antimatter ,Physics::Accelerator Physics ,Particle Physics - Experiment - Abstract
International audience; The goal of the AEgIS experiment is to measure the gravitational acceleration of antihydrogen ? the simplest atom consisting entirely of antimatter ? with the ultimate precision of 1%. We plan to verify the Weak Equivalence Principle (WEP), one of the fundamental laws of nature, with an antimatter beam. The experiment consists of a positron accumulator, an antiproton trap and a Stark accelerator in a solenoidal magnetic field to form and accelerate a pulsed beam of antihydrogen atoms towards a free-fall detector. The antihydrogen beam passes through a moir? deflectometer to measure the vertical displacement due to the gravitational force. A position and time sensitive hybrid detector registers the annihilation points of the antihydrogen atoms and their time-of-flight. The detection principle has been successfully tested with antiprotons and a miniature moir? deflectometer coupled to a nuclear emulsion detector.
- Published
- 2015
- Full Text
- View/download PDF
28. Monte-Carlo based performance assessment of ASACUSA's antihydrogen detector.
- Author
-
Nagata, Y., Kuroda, N., Kolbinger, B., Fleck, M., Malbrunot, C., Mäckel, V., Sauerzopf, C., Simon, M.C., Tajima, M., Zmeskal, J., Breuker, H., Higaki, H., Kanai, Y., Matsuda, Y., Ulmer, S., Venturelli, L., Widmann, E., and Yamazaki, Y.
- Subjects
- *
ANTIHYDROGEN , *NUCLEAR counters , *SCINTILLATORS , *PLASTICS , *COSMIC rays , *MONTE Carlo method - Abstract
Abstract An antihydrogen detector consisting of a thin BGO disk and a surrounding plastic scintillator hodoscope has been developed. We have characterized the two-dimensional positions sensitivity of the thin BGO disk and energy deposition into the BGO was calibrated using cosmic rays by comparing experimental data with Monte-Carlo simulations. The particle tracks were defined by connecting BGO hit positions and hits on the surrounding hodoscope scintillator bars. The event rate was investigated as a function of the angles between the tracks and the energy deposition in the BGO for simulated antiproton events, and for measured and simulated cosmic ray events. Identification of the antihydrogen Monte Carlo events was performed using the energy deposited in the BGO and the particle tracks. The cosmic ray background was limited to 12 mHz with a detection efficiency of 81%. The signal-to-noise ratio was improved from 0.22 s − 1 ∕ 2 obtained with the detector in 2012 to 0.26 s − 1 ∕ 2 in this work. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF
29. Upgrade of ASACUSA's antihydrogen detector.
- Author
-
Kraxberger, V., Amsler, C., Breuker, H., Chesnevskaya, S., Costantini, G., Ferragut, R., Giammarchi, M., Gligorova, A., Gosta, G., Higaki, H., Hunter, E.D., Killian, C., Kletzl, V., Kuroda, N., Lanz, A., Leali, M., Mäckel, V., Maero, G., Malbrunot, C., and Mascagna, V.
- Subjects
- *
ANTIHYDROGEN , *ANTIPROTONS , *DETECTORS , *COLLISION spectroscopy , *HYPERFINE coupling , *ATOMIC spectroscopy - Abstract
The goal of the ASACUSA (Atomic Spectroscopy And Collisions Using Slow Antiprotons) CUSP experiment at CERN's Antiproton Decelerator is to measure the ground state hyperfine splitting of antihydrogen in order to test whether CPT invariance is broken. The ASACUSA hodoscope is a detector consisting of two layers of 32 plastic scintillator bars individually read out by two serially connected silicon photomultipliers (SiPMs) on each end. Two additional layers for position resolution along the beam axis were scintillator fibres, which will now be replaced by scintillating tiles placed onto the existing bars and also read out by SiPMs. If the antiproton of antihydrogen annihilates in the centre of the hodoscope, particles (mostly pions) are produced and travel through the various layers of the detector and produce signals. The hodoscope was successfully used during the last data taking period at CERN. The necessary time resolution to discriminate between particles travelling through the detector from outside and particles produced in the centre of the detector was achieved by the use of waveform digitisers and software constant fraction discrimination. The disadvantage of this readout scheme was the slow readout speed, which was improved by two orders of magnitude. This was done by omitting the digitisers and replacing them with TDCs reading out the digital time-over-threshold (ToT) signal using leading edge discrimination. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF
30. Gravity and antimatter: The AEgIS experiment at CERN
- Author
-
A. Hinterberger, L. Smestad, G. Nebbia, G. Testera, Marco Prevedelli, Marco Giammarchi, J. Robert, Nicola Pacifico, I. C. Tietje, Luca Penasa, Johann Marton, Fabrizio Castelli, Fiodor Sorrentino, Z. Mazzotta, P. Lebrun, Michael Doser, Alban Kellerbauer, Rafael Ferragut, Victor Matveev, Heidi Sandaker, Nicola Zurlo, L. Ravelli, O. Khalidova, S. Haider, Davide Pagano, Giovanni Consolati, Germano Bonomi, C. Zimmer, H. Holmestad, Sebastiano Mariazzi, Ole Røhne, M. Oberthaler, Angela Gligorova, Stefano Aghion, Chloé Malbrunot, Sebastian Gerber, S.R. Müller, Ruggero Caravita, Patrick Nedelec, Johann Zmeskal, F. Guatieri, Romualdo Santoro, P. Yzombard, Alberto Rotondi, J. Fesel, Eberhard Widmann, P. Lansonneur, V. Lagomarsino, B. Rienaecker, L. Di Noto, Claude Amsler, Massimo Caccia, Daniel Comparat, Giovanni Cerchiari, D. Krasnický, A. Demetrio, F. Prelz, Roberto S. Brusa, V. Petracek, M. Fanì, A. Evans, Adriano Fontana, Laboratoire Aimé Cotton (LAC), Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11)-École normale supérieure - Cachan (ENS Cachan), Institut de Physique Nucléaire de Lyon (IPNL), Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), École normale supérieure - Cachan (ENS Cachan)-Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Pagano D., Aghion S., Amsler C., Bonomi G., Brusa R.S., Caccia M., Caravita R., Castelli F., Cerchiari G., Comparat D., Consolati G., Demetrio A., Noto L.D., Doser M., Evans A., Fani M., Ferragut R., Fesel J., Fontana A., Gerber S., Giammarchi M., Gligorova A., Guatieri F., Haider S., Hinterberger A., Holmestad H., Kellerbauer A., Khalidova O., Krasnicky D., Lagomarsino V., Lansonneur P., Lebrun P., Malbrunot C., Mariazzi S., Marton J., Matveev V., Mazzotta Z., Muller S.R., Nebbia G., Nedelec P., Oberthaler M., Pacifico N., Penasa L., Petracek V., Prelz F., Prevedelli M., Ravelli L., Rienaecker B., Robert J., Rohne O.M., Rotondi A., Sandaker H., Santoro R., Smestad L., Sorrentino F., Testera G., Tietje I.C., Widmann E., Yzombard P., Zimmer C., Zmeskal J., and Zurlo N.
- Subjects
History ,Particle physics ,Physics::General Physics ,experimental methods ,CERN Lab ,General relativity ,Measure (physics) ,01 natural sciences ,Education ,Gravitational field ,0103 physical sciences ,Physics::Atomic and Molecular Clusters ,general relativity ,antimatter ,[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex] ,Equivalence principle ,010306 general physics ,Antihydrogen ,Physics ,antihydrogen ,Large Hadron Collider ,General Relativity and Cosmology ,010308 nuclear & particles physics ,atom ,gravitation: interaction ,Computer Science Applications ,experimental equipment ,equivalence principle ,Antimatter ,force: gravitation ,[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc] ,gravity, antimatter ,Particle Physics - Experiment ,Beam (structure) ,experimental results - Abstract
From the experimental point of view, very little is known about the gravitational interaction between matter and antimatter. In particular, the Weak Equivalence Principle, which is of paramount importance for the General Relativity, has not yet been directly probed with antimatter. The main goal of the AEgIS experiment at CERN is to perform a direct measurement of the gravitational force on antimatter. The idea is to measure the vertical displacement of a beam of cold antihydrogen atoms, traveling in the gravitational field of the Earth, by the means of a moiré deflectometer. An overview of the physics goals of the experiment, of its apparatus and of the first results is presented.
- Published
- 2020
- Full Text
- View/download PDF
31. Developments for pulsed antihydrogen production towards direct gravitational measurement on antimatter
- Author
-
Alberto Rotondi, S. Müller, G. Nebbia, Davide Pagano, O. Khalidova, Massimo Caccia, L. Povolo, Giovanni Consolati, V. Toso, Germano Bonomi, Heidi Sandaker, V. Petráček, A. Hinterberger, L. T. Glöggler, Sebastiano Mariazzi, B. Rienäcker, C. Zimmer, L. Di Noto, Marco Giammarchi, Marco Prevedelli, M. Antonello, Chloé Malbrunot, G. Testera, Angela Gligorova, Ole Røhne, Nicola Zurlo, Sebastian Gerber, Fabrizio Castelli, Alban Kellerbauer, A. S. Belov, I. C. Tietje, D. Krasnicky, V. Lagomarsino, M. Fanì, L. Nowak, Romualdo Santoro, Michael Doser, Patrick Nedelec, E. Oswald, J. Fesel, V. Matveev, S. Haider, P. Cheinet, A. Demetrio, F. Guatieri, Luca Penasa, A. Camper, F. Prelz, Daniel Comparat, Ruggero Caravita, T. Wolz, Markus K. Oberthaler, R. S. Brusa, Rafael Ferragut, Fani M., Antonello M., Belov A., Bonomi G., Brusa R.S., Caccia M., Camper A., Caravita R., Castelli F., Comparat D., Cheinet P., Consolati G., Demetrio A., Di Noto L., Doser M., Ferragut R., Fesel J., Gerber S., Giammarchi M., Gligorova A., Gloggler L.T., Guatieri F., Haider S., Hinterberger A., Kellerbauer A., Khalidova O., Krasnicky D., Lagomarsino V., Malbrunot C., Nowak L., Mariazzi S., Matveev V., Muller S.R., Nebbia G., Nedelec P., Oberthaler M., Oswald E., Pagano D., Penasa L., Petracek V., Povolo L., Prelz F., Prevedelli M., Rienacker B., Rohne O.M., Rotondi A., Sandaker H., Santoro R., Testera G., Tietje I.C., Toso V., Wolz T., Zimmer C., Zurlo N., Laboratoire Aimé Cotton (LAC), Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11)-École normale supérieure - Cachan (ENS Cachan), Institut de Physique Nucléaire de Lyon (IPNL), Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), and Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)
- Subjects
Gravity (chemistry) ,Physics::General Physics ,Antimatter ,experimental methods ,Gravity ,Antiproton ,magnetic field ,Positronium ,01 natural sciences ,010305 fluids & plasmas ,Nuclear physics ,Gravitation ,temperature: low ,0103 physical sciences ,general relativity ,[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex] ,Physics::Atomic and Molecular Clusters ,Physics::Atomic Physics ,010306 general physics ,Antihydrogen ,Mathematical Physics ,Physics ,gravitation: interaction ,antihydrogen: production ,talk: Kolymbari 2019/08/21 ,sensitivity ,charge exchange ,Condensed Matter Physics ,pulsed ,Atomic and Molecular Physics, and Optics ,anti-p ,equivalence principle ,gravitation: acceleration ,gravitation: local ,experimental results - Abstract
International audience; A main scientific goal of the experiment is the direct measurement of the Earth’s local gravitational acceleration g on antihydrogen. The Weak Equivalence Principle is a foundation of General Relativity. It has been extensively tested with ordinary matter but very little is known about the gravitational interaction between matter and antimatter. Antihydrogen is produced in via resonant charge-exchange reaction between cold Rydberg-excited positronium and cooled down antiprotons. The achievements for the development of a pulsed cold antihydrogen source are presented. Large number of antiprotons, necessary for a significant production rate of antihydrogen, are captured, accumulated, compressed and cooled over an extended period of time. Positronium (Ps) is formed through e$^{+}$-Ps conversion in a silica porous target at 10 K temperature in a reflection geometry inside the main apparatus. The so-formed Ps cloud is then laser-excited to Rydberg levels, for the first time in a 1 T magnetic field. Consequently, a detailed characterization of the Ps source for antihydrogen production in magnetic field needed to be performed. Several detection techniques are extensively used to monitor antiproton and positron manipulations in the formation process of antihydrogen inside the main apparatus. Positronium detection techniques underwent extensive improvements in sensitivity during the last antiproton run. At the same time, major efforts to improve integrate and commission the detectors sensitive to antihydrogen production took place.
- Published
- 2020
- Full Text
- View/download PDF
32. A cryogenic tracking detector for antihydrogen detection in the AEgIS experiment
- Author
-
J. Wuethrich, Alberto Rotondi, Daniel Comparat, O. Khalidova, Alban Kellerbauer, Ole Røhne, P.A. Ekman, G. Testera, G. Nebbia, Davide Pagano, P. Hackstock, Marco Prevedelli, M. Antonello, Fabrizio Castelli, A. Camper, Sebastian Gerber, Massimo Caccia, D. Haider, C. Zimmer, Michael Doser, F. Prelz, I. C. Tietje, L. Nowak, Heidi Sandaker, Sebastiano Mariazzi, A. Hinterberger, S. Haider, F. Guatieri, Romualdo Santoro, Marco Giammarchi, A. S. Belov, Rafael Ferragut, D. Krasnický, J. Robert, A. Demetrio, Chloé Malbrunot, V. Toso, P. Yzombard, Giovanni Consolati, Germano Bonomi, L. Di Noto, V. Lagomarsino, James William Storey, Claude Amsler, T. Wolz, S.R. Müller, Ruggero Caravita, V. A. Matveev, B. Rienaecker, Luca Penasa, M. Oberthaler, Roberto S. Brusa, V. Petracek, Angela Gligorova, Patrick Nedelec, Nicola Zurlo, M. Fanì, E. Oswald, Laboratoire Aimé Cotton (LAC), Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11)-École normale supérieure - Cachan (ENS Cachan), Institut de Physique Nucléaire de Lyon (IPNL), Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Amsler, C., Antonello, M., Belov, A., Bonomi, G., Brusa, R.S., Caccia, M., Camper, A., Caravita, R., Castelli, F., Comparat, D., Consolati, G., Demetrio, A., Di Noto, L., Doser, M., Ekman, P.A., Fanì, M., Ferragut, R., Gerber, S., Giammarchi, M., Gligorova, A., Guatieri, F., Hackstock, P., Haider, D., Haider, S., Hinterberger, A., Kellerbauer, A., Khalidova, O., Krasnický, D., Lagomarsino, V., Malbrunot, C., Mariazzi, S., Matveev, V., Müller, S.R., Nebbia, G., Nedelec, P., Nowak, L., Oberthaler, M., Oswald, E., Pagano, D., Penasa, L., Petracek, V., Prelz, F., Prevedelli, M., Rienaecker, B., Robert, J., Røhne, O.M., Rotondi, A., Sandaker, H., Santoro, R., Storey, J., Testera, G., Tietje, I.C., Toso, V., Wolz, T., Wuethrich, J., Yzombard, P., Zimmer, C., Zurlo, N., École normale supérieure - Cachan (ENS Cachan)-Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), Université Claude Bernard Lyon 1 (UCBL), and Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Physics - Instrumentation and Detectors ,Atomic Physics (physics.atom-ph) ,Physics::Instrumentation and Detectors ,Antiproton ,Cryogenics ,Antihydrogen ,Antimatter ,Cryogenic tracker ,Gravity ,Positron ,Scintillator detector ,Tracking (particle physics) ,01 natural sciences ,High Energy Physics - Experiment ,Physics - Atomic Physics ,High Energy Physics - Experiment (hep-ex) ,tracking detector ,Physics::Atomic Physics ,Detectors and Experimental Techniques ,Instrumentation ,time resolution ,Physics ,Detector ,Instrumentation and Detectors (physics.ins-det) ,cryogenics ,performance ,Nuclear and High Energy Physics ,antihydrogen: annihilation ,FOS: Physical sciences ,Superconducting magnet ,Silicon photomultiplier ,Optics ,0103 physical sciences ,Physics::Atomic and Molecular Clusters ,scintillation counter: fibre ,photomultiplier: silicon ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,010306 general physics ,detector: design ,activity report ,antimatter, gravity ,010308 nuclear & particles physics ,business.industry ,Physics::Accelerator Physics ,business ,pi: particle identification - Abstract
We present the commissioning of the Fast Annihilation Cryogenic Tracker detector (FACT), installed around the antihydrogen production trap inside the 1 T superconducting magnet of the AEgIS experiment. FACT is designed to detect pions originating from the annihilation of antiprotons. Its 794 scintillating fibers operate at 4K and are read out by silicon photomultipliers (MPPCs) at near room temperature. FACT provides the antiproton/antihydrogen annihilation position information with a few ns timing resolution. We present the hardware and software developments which led to the successful operation of the detector for antihydrogen detection and the results of an antiproton-loss based efficiency assessment. The main background to the antihydrogen signal is that of the positrons impinging onto the positronium conversion target and creating a large amount of gamma rays which produce a sizeable signal in the MPPCs shortly before the antihydrogen signal is expected. We detail the characterization of this background signal and its impact on the antihydrogen detection efficiency. We present the commissioning of the Fast Annihilation Cryogenic Tracker detector (FACT), installed around the antihydrogen production trap inside the 1 T superconducting magnet of the AEḡIS experiment. FACT is designed to detect pions originating from the annihilation of antiprotons. Its 794 scintillating fibers operate at 4 K and are read out by silicon photomultipliers (MPPCs) at near room temperature. FACT provides the antiproton/antihydrogen annihilation position information with a few ns timing resolution. We present the hardware and software developments which led to the successful operation of the detector for antihydrogen detection and the results of an antiproton-loss based efficiency assessment. The main background to the antihydrogen signal is that of the positrons impinging onto the positronium conversion target and creating a large amount of gamma rays which produce a sizeable signal in the MPPCs shortly before the antihydrogen signal is expected. We detail the characterization of this background signal and its impact on the antihydrogen detection efficiency.
- Published
- 2020
- Full Text
- View/download PDF
33. Positronium Rydberg excitation diagnostic in a 1T cryogenic environment
- Author
-
Ole Røhne, Johann Marton, Chloé Malbrunot, B. Rienaecker, Davide Pagano, P. Hackstock, M. Fanì, Giovanni Consolati, Germano Bonomi, S. Müller, R. S. Brusa, M. Vujanovic, A. Camper, G. Nebbia, S. Haider, V. Matveev, Patrick Nedelec, Sebastiano Mariazzi, Johann Zmeskal, C. Zimmer, A. Hinterberger, Ruggero Caravita, E. Widmann, A. S. Belov, O. Khalidova, Marco Giammarchi, Marco Prevedelli, M. Antonello, Lillian Smestad, I. C. Tietje, Fabrizio Castelli, Stefano Aghion, Alban Kellerbauer, Romualdo Santoro, Michael Doser, Claude Amsler, Ph. Lebrun, H. Holmestad, Rafael Ferragut, M. Oberthaler, G. Testera, Angela Gligorova, F. Prelz, J. Robert, P. Yzombard, Felice Sorrentino, Nicola Zurlo, Daniel Comparat, D. Krasnický, A. Demetrio, C. Evans, Andrea Fontana, Giovanni Cerchiari, Massimo Caccia, Luca Penasa, Heidi Sandaker, V. Petráček, Alberto Rotondi, L. Di Noto, Sebastian Gerber, F. Guatieri, P. Lansonneur, V. Lagomarsino, J. Fesel, Caravita R., Mariazzi S., Aghion S., Amsler C., Antonello M., Belov A., Bonomi G., Brusa R.S., Caccia M., Camper A., Castelli F., Cerchiari G., Comparat D., Consolati G., Demetrio A., Di Noto L., Doser M., Evans C., Fani M., Ferragut R., Fesel J., Fontana A., Gerber S., Giammarchi M., Gligorova A., Guatieri F., Hackstock P., Haider S., Hinterberger A., Holmestad H., Kellerbauer A., Khalidova O., Krasnicky D., Lagomarsino V., Lansonneur P., Lebrun P., Malbrunot C., Marton J., Matveev V., Muller S.R., Nebbia G., Nedelec P., Oberthaler M., Pagano D., Penasa L., Petracek V., Prelz F., Prevedelli M., Rienaecker B., Robert J., Rohne O.M., Rotondi A., Sandaker H., Santoro R., Smestad L., Sorrentino F., Testera G., Tietje I.C., Vujanovic M., Widmann E., Yzombard P., Zimmer C., Zmeskal J., and Zurlo N.
- Subjects
positronium, spectroscopy ,Materials science ,Laser ,Positronium ,law.invention ,symbols.namesake ,law ,Antimatter ,Field desorption ,Rydberg formula ,symbols ,Physics::Atomic Physics ,Atomic physics ,Spectroscopy ,Antihydrogen ,Excitation - Abstract
Forming a pulsed beam of cold antihydrogen using charge-exchange with Rydberg positronium (Ps) is the goal of the AEgIS collaboration, which aims to a first gravity measurement on neutral antimatter. Recently achieved results in Ps formation and laser spectroscopy in the main AEgIS apparatus are summarized. First, Ps has been produced using nanochanneled silicon targets in a cryogenic environment (~ 15 K) with 1 T magnetic field and observed by means of Single-Shot Positron Annihilation Lifetime Spectroscopy. The first demonstration of Ps n=3 excitation has been obtained as well using the same technique, validating the proof-of-concept of AEgIS. Subsequently, a new fast and high sensitivity detection method for laser-excited Ps in high magnetic field has been developed, using the combination of laser/field ionization and an high sensitivity MCP detector coupled to a low-noise CMOS camera. This technique will form the basis of future experiments involving Rydberg Ps spectroscopy in AEgIS.
- Published
- 2019
34. Antiproton tagging and vertex fitting in a Timepix3 detector
- Author
-
Johann Zmeskal, L. Di Noto, Sebastian Gerber, P. Lansonneur, D. Pagano, V. Petracek, V. N. Matveev, F. Guatieri, C. Malbrunot, O. Khalidova, Ruggero Caravita, A. Rotondi, H. Holmestad, A. S. Belov, R. S. Brusa, Daniel Comparat, A. Gligorova, Massimo Caccia, A. Kellerbauer, Giovanni Cerchiari, Marco Prevedelli, M. Antonello, Heidi Sandaker, I. C. Tietje, F. Sorrentino, G. Bonomi, A. Camper, G. Testera, Claude Amsler, P. Nedelec, M. Doser, Fabrizio Castelli, Ph. Hackstock, F. Prelz, A. Hinterberger, Marco Giammarchi, S. Haider, S.R. Müller, J. Robert, A. Demetrio, L. Smestad, C. Evans, S. Aghion, N. Zurlo, G. Nebbia, Luca Penasa, P. Yzombard, A. Fontana, C. Zimmer, M. Fanì, Romualdo Santoro, S. Mariazzi, J. Fesel, J. Marton, P. Lebrun, V. Lagomarsino, Ole Røhne, Giovanni Consolati, D. Krasnický, Markus K. Oberthaler, B. Rienaecker, E. Widmann, Rafael Ferragut, Nicola Pacifico, Laboratoire Aimé Cotton (LAC), École normale supérieure - Cachan (ENS Cachan)-Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), Institut de Physique Nucléaire de Lyon (IPNL), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), AEgIS, Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11)-École normale supérieure - Cachan (ENS Cachan), Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Aghion, S., Amsler, C., Antonello, M., Belov, A., Bonomi, G., Brusa, R.S., Caccia, M., Camper, A., Caravita, R., Castelli, F., Cerchiari, G., Comparat, D., Consolati, G., Demetrio, A., Noto, L. Di, Doser, M., Evans, C., Fanì, M., Ferragut, R., Fesel, J., Fontana, A., Gerber, S., Giammarchi, M., Gligorova, A., Guatieri, F., Hackstock, Ph., Haider, S., Hinterberger, A., Holmestad, H., Kellerbauer, A., Khalidova, O., Krasnický, D., Lagomarsino, V., Lansonneur, P., Lebrun, P., Malbrunot, C., Mariazzi, S., Marton, J., Matveev, V., Müller, S.R., Nebbia, G., Nedelec, P., Oberthaler, M., Pacifico, N., Pagano, D., Penasa, L., Petracek, V., Prelz, F., Prevedelli, M., Rienaecker, B., Robert, J., Røhne, O.M., Rotondi, A., Sandaker, H., Santoro, R., Smestad, L., Sorrentino, F., Testera, G., Tietje, I.C., Widmann, E., Yzombard, P., Zimmer, C., Zmeskal, J., and Zurlo, N.
- Subjects
Vertex (graph theory) ,Physics::Instrumentation and Detectors ,01 natural sciences ,Particle identification methods ,Physics::Atomic Physics ,Detectors and Experimental Techniques ,Nuclear Experiment ,Instrumentation ,Image resolution ,Mathematical Physics ,media_common ,Detector modelling and simulations I (interaction of radiation with matter, interaction of photons with matter, interaction of hadrons with matter, etc) ,Physics ,Detector ,Simulation methods and program ,Hybrid detectors ,Simulation methods and programs ,interac- tion of photons with matter ,interaction of photons with matter ,Detector modelling and simulations I ,interaction of hadrons with matter ,force: gravitation ,readout ,asymmetry ,Particle physics ,Physics::General Physics ,CERN Lab ,media_common.quotation_subject ,antihydrogen: annihilation ,Detector modelling and simulations I (interaction of radiation with matter ,Asymmetry ,anti-p p: annihilation ,Particle identification method ,0103 physical sciences ,detector: pixel ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,010306 general physics ,Antihydrogen ,spatial resolution ,etc) ,antihydrogen ,detector: position sensitive ,010308 nuclear & particles physics ,Hybrid detector ,interaction of radiation with matter ,efficiency ,Antiproton ,High Energy Physics::Experiment - Abstract
International audience; Studies of antimatter are important for understanding our universe at a fundamental level. There are still unsolved problems, such as the matter-antimatter asymmetry in the universe. The AEgIS experiment at CERN aims at measuring the gravitational fall of antihydrogen in order to determine the gravitational force on antimatter. The proposed method will make use of a position-sensitive detector to measure the annihilation point of antihydrogen. Such a detector must be able to tag the antiproton, measure its time of arrival and reconstruct its annihilation point with high precision in the vertical direction. This work explores a new method for tagging antiprotons and reconstructing their annihilation point. Antiprotons from the Antiproton Decelerator at CERN were used to obtain data on direct annihilations on the surface of a silicon pixel sensor with Timepix3 readout. These data were used to develop and verify a detector response model for annihilation of antiprotons in this detector. Using this model and the antiproton data it is shown that a tagging efficiency of 50± 10% and a vertical position resolution of 22 ± 0.5 μm can be obtained.
- Published
- 2018
- Full Text
- View/download PDF
35. AEgIS at ELENA: outlook for physics with a pulsed cold antihydrogen beam
- Author
-
Giovanni Consolati, F. Sorrentino, J. Marton, H. Holmestad, M. Fanì, A. Kellerbauer, F. Prelz, Heidi Sandaker, Ole Røhne, O. Khalidova, Daniel Comparat, Massimo Caccia, G. Nebbia, R. S. Brusa, C. Malbrunot, I. C. Tietje, Marco Prevedelli, N. Zurlo, P. Yzombard, D. Krasnický, P. Nedelec, Z. Mazzotta, V. Petracek, G. Testera, P. Lebrun, J. Fesel, Fabrizio Castelli, L. Di Noto, Johann Zmeskal, G. Bonomi, E. Widmann, Rafael Ferragut, Claude Amsler, D. Pagano, S. Haider, V. Lagomarsino, A. Gligorova, S.R. Müller, Marco Giammarchi, S. Aghion, J. Robert, Romualdo Santoro, S. Mariazzi, Nicola Pacifico, Luca Penasa, A. Demetrio, C. Zimmer, C. Evans, Giovanni Cerchiari, Ruggero Caravita, P. Lansonneur, Markus K. Oberthaler, B. Rienaecker, A. Hinterberger, L. Smestad, A. Fontana, M. Doser, Sebastian Gerber, V. N. Matveev, F. Guatieri, A. Rotondi, Doser, M., Aghion, S., Amsler, C., Bonomi, G., Brusa, R.S., Caccia, M., Caravita, R., Castelli, F., Cerchiari, G., Comparat, D., Consolati, G., Demetrio, A., Di Noto, L., Evans, C., Fanì, M., Ferragut, R., Fesel, J., Fontana, A., Gerber, S., Giammarchi, M., Gligorova, A., Guatieri, F., Haider, S., Hinterberger, A., Holmestad, H., Kellerbauer, A., Khalidova, O., Krasnický, D., Lagomarsino, V., Lansonneur, P., Lebrun, P., Malbrunot, C., Mariazzi, S., Marton, J., Matveev, V., Mazzotta, Z., Müller, S.R., Nebbia, G., Nedelec, P., Oberthaler, M., Pacifico, N., Pagano, D., Penasa, L., Petracek, V., Prelz, F., Prevedelli, M., Rienaecker, B., Robert, J., Røhne, O.M., Rotondi, A., Sandaker, H., Santoro, R., Smestad, L., Sorrentino, F., Testera, G., Tietje, I.C., Widmann, E., Yzombard, P., Zimmer, C., Zmeskal, J., Zurlo, N., Laboratoire Aimé Cotton (LAC), École normale supérieure - Cachan (ENS Cachan)-Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), Institut de Physique Nucléaire de Lyon (IPNL), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11)-École normale supérieure - Cachan (ENS Cachan), Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), and Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)
- Subjects
General Physics and Astronomy ,Antiproton ,magnetic field ,Positronium ,01 natural sciences ,010305 fluids & plasmas ,antihydrogen: formation ,antimatter ,Physics::Atomic Physics ,Physics ,antihydrogen, antiprotons, positrons, positronium ,Large Hadron Collider ,atom ,General Engineering ,Articles ,antihydrogen ,antiprotons ,positronium ,positrons ,charge exchange ,pulsed ,anti-p ,Antimatter ,force: gravitation ,gravitation: acceleration ,Rydberg formula ,symbols ,Physics::General Physics ,CERN Lab ,General Mathematics ,interferometer ,Positron ,antihydrogen: beam ,[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex] ,Nuclear physics ,symbols.namesake ,0103 physical sciences ,Physics::Atomic and Molecular Clusters ,positronium: excited state ,010306 general physics ,Antihydrogen ,detector: position sensitive ,gravitation: interaction ,antihydrogen: production ,ground state: hyperfine structure ,Antiproton Decelerator ,Automatic Keywords ,Beam (structure) - Abstract
The efficient production of cold antihydrogen atoms in particle traps at CERN’s Antiproton Decelerator has opened up the possibility of performing direct measurements of the Earth’s gravitational acceleration on purely antimatter bodies. The goal of the AEgIS collaboration is to measure the value of g for antimatter using a pulsed source of cold antihydrogen and a Moiré deflectometer/Talbot–Lau interferometer. The same antihydrogen beam is also very well suited to measuring precisely the ground-state hyperfine splitting of the anti-atom. The antihydrogen formation mechanism chosen by AEgIS is resonant charge exchange between cold antiprotons and Rydberg positronium. A series of technical developments regarding positrons and positronium (Ps formation in a dedicated room-temperature target, spectroscopy of the n =1–3 and n =3–15 transitions in Ps, Ps formation in a target at 10 K inside the 1 T magnetic field of the experiment) as well as antiprotons (high-efficiency trapping of , radial compression to sub-millimetre radii of mixed plasmas in 1 T field, high-efficiency transfer of to the antihydrogen production trap using an in-flight launch and recapture procedure) were successfully implemented. Two further critical steps that are germane mainly to charge exchange formation of antihydrogen—cooling of antiprotons and formation of a beam of antihydrogen—are being addressed in parallel. The coming of ELENA will allow, in the very near future, the number of trappable antiprotons to be increased by more than a factor of 50. For the antihydrogen production scheme chosen by AEgIS, this will be reflected in a corresponding increase of produced antihydrogen atoms, leading to a significant reduction of measurement times and providing a path towards high-precision measurements. This article is part of the Theo Murphy meeting issue ‘Antiproton physics in the ELENA era’.
- Published
- 2018
- Full Text
- View/download PDF
36. Measurement of antiproton annihilation on Cu, Ag and Au with emulsion films
- Author
-
Ole Røhne, M. Sacerdoti, D. Krasnicky, Marco Prevedelli, Daniel Comparat, I. C. Tietje, Patrick Nedelec, A. Hinterberger, Akitaka Ariga, Johann Zmeskal, V. Lagomarsino, Rafael Ferragut, V. Matveev, Z. Mazzotta, C. Pistillo, Roberto S. Brusa, J. Fesel, P. Bräunig, S. Vamosi, Nicola Pacifico, Alban Kellerbauer, Ruggero Caravita, V. Petracek, L. Ravelli, G. Nebbia, L. Cabaret, Paola Scampoli, Davide Pagano, Giovanni Consolati, Germano Bonomi, T. Huse, F. Prelz, Heidi Sandaker, Massimo Caccia, B. Rienaecker, Claude Amsler, C. Zimmer, Sebastiano Mariazzi, E. Widmann, M. Oberthaler, Angela Gligorova, Michal Simon, Sebastian Gerber, Jiro Kawada, S. Müller, Alberto Rotondi, L. Di Noto, Adriano Fontana, Chloé Malbrunot, F. Guatieri, M. Vladymyrov, P. Yzombard, P. Lansonneur, Ph. Lebrun, H. Holmestad, S. Haider, Tomoko Ariga, Stefano Aghion, Antonio Ereditato, Marco Giammarchi, Lillian Smestad, Felice Sorrentino, G. Testera, Fabrizio Castelli, Michael Doser, Giovanni Cerchiari, M. Kimura, A. Demetrio, C. Evans, Nicola Zurlo, Luca Penasa, Romualdo Santoro, Aghion, S., Amsler, C., Ariga, A., Ariga, T., Bonomi, G., Bräunig, P., Brusa, R.S., Cabaret, L., Caccia, M., Caravita, R., Castelli, F., Cerchiari, G., Comparat, D., Consolati, G., Demetrio, A., Noto, L. Di, Doser, M., Ereditato, A., Evans, C., Ferragut, R., Fesel, J., Fontana, A., Gerber, S., Giammarchi, M., Gligorova, A., Guatieri, F., Haider, S., Hinterberger, A., Holmestad, H., Huse, T., Kawada, J., Kellerbauer, A., Kimura, M., Krasnický, D., Lagomarsino, V., Lansonneur, P., Lebrun, P., Malbrunot, C., Mariazzi, S., Matveev, V., Mazzotta, Z., Müller, S.R., Nebbia, G., Nedelec, P., Oberthaler, M., Pacifico, N., Pagano, D., Penasa, L., Petracek, V., Pistillo, C., Prelz, F., Prevedelli, M., Ravelli, L., Rienaecker, B., Røhne, O.M., Rotondi, A., Sacerdoti, M., Sandaker, H., Santoro, R., Scampoli, P., Simon, M., Smestad, L., Sorrentino, F., Testera, G., Tietje, I.C., Vamosi, S., Vladymyrov, M., Widmann, E., Yzombard, P., Zimmer, C., Zmeskal, J., Zurlo, N., Laboratoire Aimé Cotton (LAC), Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11)-École normale supérieure - Cachan (ENS Cachan), Institut de Physique Nucléaire de Lyon (IPNL), Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Brusa, R. S., Müller, S. R., Røhne, O. M., Scampoli, Paola, and Tietje, I. C.
- Subjects
Particle physics ,Physics - Instrumentation and Detectors ,530 Physics ,Monte Carlo method ,Detector modelling and simulations I (interaction of radiation with matter ,FOS: Physical sciences ,interaction of radiation with matter, interaction of photons with matter, interaction of hadrons with matter, Particle tracking detectors ,01 natural sciences ,High Energy Physics - Experiment ,High Energy Physics - Experiment (hep-ex) ,emulsion detectors ,0103 physical sciences ,antimatter ,free fall ,Detector modelling and simulations I (interaction of radiation with matter, interaction of photons with matter, interaction of hadrons with matter, etc) ,Particle tracking detectors (Solidstate detectors) ,Instrumentation ,Mathematical Physics ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,Detectors and Experimental Techniques ,010306 general physics ,Nuclear Experiment ,Particle tracking detectors (Solid- state detectors) ,physics.ins-det ,detectors ,antiproton annihilation ,etc) ,antihydrogen ,Physics ,Large Hadron Collider ,Annihilation ,010308 nuclear & particles physics ,hep-ex ,emulsion detectors, antiproton annihilation, antimatter, free fall ,antimatter, antihydrogen, detectors, antiprotons ,interaction of photons with matter ,Instrumentation and Detectors (physics.ins-det) ,Hadronization ,Antiproton Decelerator ,interaction of hadrons with matter ,Beamline ,Antiproton ,Particle ,Physics::Accelerator Physics ,High Energy Physics::Experiment ,antiprotons ,Particle Physics - Experiment - Abstract
The characteristics of low energy antiproton annihilations on nuclei (e.g. hadronization and product multiplicities) are not well known, and Monte Carlo simulation packages that use different models provide different descriptions of the annihilation events. In this study, we measured the particle multiplicities resulting from antiproton annihilations on nuclei. The results were compared with predictions obtained using different models in the simulation tools GEANT4 and FLUKA. For this study, we exposed thin targets (Cu, Ag and Au) to a very low energy antiproton beam from CERN's Antiproton Decelerator, exploiting the secondary beamline available in the AEgIS experimental zone. The antiproton annihilation products were detected using emulsion films developed at the Laboratory of High Energy Physics in Bern, where they were analysed at the automatic microscope facility. The fragment multiplicity measured in this study is in good agreement with results obtained with FLUKA simulations for both minimally and heavily ionizing particles. The characteristics of low energy antiproton annihilations on nuclei (e.g. hadronization and product multiplicities) are not well known, and Monte Carlo simulation packages that use different models provide different descriptions of the annihilation events. In this study, we measured the particle multiplicities resulting from antiproton annihilations on nuclei. The results were compared with predictions obtained using different models in the simulation tools GEANT4 and FLUKA. For this study, we exposed thin targets (Cu, Ag and Au) to a very low energy antiproton beam from CERN's Antiproton Decelerator, exploiting the secondary beamline available in the AEgIS experimental zone. The antiproton annihilation products were detected using emulsion films developed at the Laboratory of High Energy Physics in Bern, where they were analysed at the automatic microscope facility. The fragment multiplicity measured in this study is in good agreement with results obtained with FLUKA simulations for both minimally and heavily ionizing particles.
- Published
- 2017
- Full Text
- View/download PDF
37. The AEgIS experiment at CERN: Measuring antihydrogen free-fall in earth's gravitational field to test WEP with antimatter
- Author
-
Daniel Comparat, P. Lebrun, Heidi Sandaker, L. Ravelli, Davide Pagano, Alberto Rotondi, G. Testera, S. Haider, Tomoko Ariga, Antonio Ereditato, F. Prelz, Rafael Ferragut, Fabrizio Castelli, Michael Doser, Sebastian Gerber, Paola Scampoli, F. Guatieri, Claude Amsler, H. Holmestad, P. Lansonneur, Felice Sorrentino, Giovanni Consolati, Germano Bonomi, M. Oberthaler, M. Sacerdoti, Angela Gligorova, Marco Prevedelli, P. Yzombard, I. C. Tietje, Nicola Zurlo, L. Cabaret, Patrick Nedelec, Johann Zmeskal, T. Huse, G. Nebbia, Adriano Fontana, Sebastiano Mariazzi, B. Rienaecker, N. Pacifico, Luca Penasa, Roberto S. Brusa, S. Vamosi, V. Petracek, C. Pistillo, Ruggero Caravita, Marco Giammarchi, Z. Mazzotta, Alban Kellerbauer, V. A. Matveev, Eberhard Widmann, V. Lagomarsino, L. Di Noto, Massimo Caccia, I. M. Strojek, Ole Røhne, Giovanni Cerchiari, P. Bräunig, D. Krasnický, A. Demetrio, C. Evans, J. Fesel, Chloé Malbrunot, L. Smestad, Romualdo Santoro, Brusa, R. S, Amsler, C, Ariga, T, Bonomi, G, Bräunig, P, Cabaret, L, Caccia, M, Caravita, R, Castelli, F, Cerchiari, G, Comparat, D, Consolati, G, Demetrio, A., Di Noto, L, Doser, M, Ereditato, A, Evans, C, Ferragut, R, Fesel, J, Fontana, A, Gerber, S, Giammarchi, M, Gligorova, A, Guatieri, F, Haider, S, Holmestad, H, Huse, T, Kellerbauer, A, Krasnický, D, Lagomarsino, V, Lansonneur, P, Lebrun, P, Malbrunot, C, Mariazzi, S, Matveev, V, Mazzotta, Z, Nebbia, G, Nedelec, P, Oberthaler, M, Pacifico, N, Pagano, D, Penasa, L, Petracek, V, Pistillo, C, Prelz, F, Prevedelli, M, Ravelli, L, Rienaecker, B, Røhne, O. M, Rotondi, A, Sacerdoti, M, Sandaker, H, Santoro, R, Scampoli, Paola, Smestad, L, Sorrentino, F, Strojek, I. M, Testera, G, Tietje, I. C, Vamosi, S, Widmann, E, Yzombard, P, Zmeskal, J, Zurlo, N., Brusa, R S, Røhne, O M, Scampoli, P, Strojek, I M, Tietje, I C, Zurlo, N, Institut de Physique Nucléaire de Lyon (IPNL), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Aimé Cotton (LAC), École normale supérieure - Cachan (ENS Cachan)-Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), and Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11)-École normale supérieure - Cachan (ENS Cachan)
- Subjects
History ,Physics::General Physics ,CERN Lab ,530 Physics ,deflection ,[PHYS.PHYS.PHYS-ACC-PH]Physics [physics]/Physics [physics]/Accelerator Physics [physics.acc-ph] ,antihydrogen: beam ,7. Clean energy ,01 natural sciences ,Education ,Nuclear physics ,Physics and Astronomy (all) ,Gravitational field ,positron: capture ,anti-p: capture ,0103 physical sciences ,excited state ,antimatter ,Physics::Atomic Physics ,Equivalence principle ,010306 general physics ,Antihydrogen ,Physics ,Large Hadron Collider ,010308 nuclear & particles physics ,charge exchange ,Computer Science Applications ,Antiproton Decelerator ,Deflection (physics) ,equivalence principle ,Antiproton ,gravitation ,Antimatter ,Physics::Accelerator Physics ,High Energy Physics::Experiment ,gravity, antihydrogen - Abstract
International audience; The AEgIS (Antimatter Experiment: Gravity, Interferometry, Spectroscopy) experiment is designed with the objective to test the weak equivalence principle with antimatter by studying the free fall of antihydrogen in the Earth’s gravitational field. A pulsed cold beam of antihydrogen will be produced by charge exchange between cold Ps excited in Rydberg state and cold antiprotons. Finally the free fall will be measured by a classical moiré deflectometer. The apparatus being assembled at the Antiproton Decelerator at CERN will be described, then the advancements of the experiment will be reported: positrons and antiprotons trapping measurements, Ps two-step excitation and a test-measurement of antiprotons deflection with a small scale moiré deflectometer.
- Published
- 2017
- Full Text
- View/download PDF
38. Characterization of a transmission positron/positronium converter for antihydrogen production
- Author
-
Victor Matveev, Paola Scampoli, Tomoko Ariga, Ulrik I. Uggerhøj, S. Haider, Claude Amsler, S.R. Müller, G. Nebbia, J. Fesel, Ole Røhne, B. Rienäcker, Roberto S. Brusa, Z. Mazzotta, G. Testera, Eberhard Widmann, Rafael Ferragut, V. Petracek, Giovanni Cerchiari, Felice Sorrentino, Romualdo Santoro, V. Lagomarsino, Alban Kellerbauer, L. Resch, S.L. Andersen, N. Pacifico, Luca Penasa, F. Lyckegaard, F. Prelz, Fabrizio Castelli, Stefano Aghion, J. Robert, D. Krasnický, A. Demetrio, Sebastiano Mariazzi, C. Evans, L. Ravelli, L. Di Noto, Michael Doser, Ruggero Caravita, Davide Pagano, P. Lebrun, C. Zimmer, Giovanni Consolati, Jacques Chevallier, Germano Bonomi, P. Lansonneur, Massimo Caccia, Sebastian Gerber, Marco Giammarchi, Daniel Comparat, Heidi Sandaker, Antonio Ereditato, M. Sacerdoti, M. C. Simon, F. Guatieri, Nicola Zurlo, Marco Prevedelli, H. Holmestad, L. Povolo, Chloé Malbrunot, I. C. Tietje, Adriano Fontana, Alberto Rotondi, A. Hinterberger, L. Smestad, Patrick Nedelec, Johann Zmeskal, M. Oberthaler, Angela Gligorova, P. Yzombard, Université Paris-Sud - Paris 11 (UP11), Laboratoire Aimé Cotton (LAC), École normale supérieure - Cachan (ENS Cachan)-Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), Institut de Physique Nucléaire de Lyon (IPNL), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Aghion, S., Amsler, C., Ariga, T., Bonomi, G., Brusa, R.S., Caccia, M., Caravita, R., Castelli, F., Cerchiari, G., Comparat, D., Consolati, G., Demetrio, A., Di Noto, L., Doser, M., Ereditato, A., Evans, C., Ferragut, R., Fesel, J., Fontana, A., Gerber, S., Giammarchi, M., Gligorova, A., Guatieri, F., Haider, S., Hinterberger, A., Holmestad, H., Kellerbauer, A., Krasnický, D., Lagomarsino, V., Lansonneur, P., Lebrun, P., Malbrunot, C., Mariazzi, S., Matveev, V., Mazzotta, Z., Müller, S.R., Nebbia, G., Nedelec, P., Oberthaler, M., Pacifico, N., Pagano, D., Penasa, L., Petracek, V., Povolo, L., Prelz, F., Prevedelli, M., Ravelli, L., Resch, L., Rienäcker, B., Robert, J., Røhne, O.M., Rotondi, A., Sacerdoti, M., Sandaker, H., Santoro, R., Scampoli, P., Simon, M., Smestad, L., Sorrentino, F., Testera, G., Tietje, I.C., Widmann, E., Yzombard, P., Zimmer, C., Zmeskal, J., Zurlo, N., Andersen, S.L., Chevallier, J., Uggerhøj, U.I., Lyckegaard, F., Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11)-École normale supérieure - Cachan (ENS Cachan), Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Brusa, R. S., Müller, S. R., Røhne, O. M., Scampoli, Paola, Tietje, I. C., Andersen, S. L., and Uggerhøj, U. I.
- Subjects
Photomultiplier ,COLLISIONS ,Positronium, Transmission, Antihydrogen ,Nuclear and High Energy Physics ,GRAPHITE ,Astrophysics::High Energy Astrophysical Phenomena ,BEAM ,[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex] ,Kinetic energy ,Positronium ,01 natural sciences ,Secondary electrons ,010305 fluids & plasmas ,SECONDARY-ELECTRON EMISSION ,Positron ,POSITRON-ANNIHILATION ,THIN-FILMS ,0103 physical sciences ,Transmission ,Antihydrogen ,mesa-structured silica ,010306 general physics ,COLD ,Instrumentation ,Physics ,PLASMA ,Scattering ,SURFACES ,positronium, mesa-structured silica ,TRANSPORT ,Time of flight ,Physics::Accelerator Physics ,Atomic physics - Abstract
In this work a characterization study of forward emission from a thin, meso-structured silica Received 17 March 2017 positron/positronium (Ps) converter following implantation of positrons in light of possible antihydrogen production is presented. The target consisted of a similar to 1 mu m thick ultraporous silica film e-gun evaporated onto a 20 nm carbon foil. The Ps formation and emission was studied via Single Shot Positron Annihilation Lifetime Spectroscopy measurements after implantation of pulses with 3 4.10(7) positrons and 10 ns temporal width. The forward emission of implanted positrons and secondary electrons was investigated with a micro-channel plate phosphor screen assembly, connected either to a CCD camera for imaging of the impinging particles, or to a fast photomultiplier tube to extract information about their time of flight. The maximum Ps formation fraction was estimated to be similar to 10%. At least 10% of the positrons implanted with an energy of 3.3 keV are forward-emitted with a scattering angle smaller than 50 and maximum kinetic energy of 1.2 keV. At least 0.1-0.2 secondary electrons per implanted positron were also found to be forward-emitted with a kinetic energy of a few eV. The possible application of this kind of positron/positronium converter for antihydrogen production is discussed. (C) 2017 Elsevier B.V. All rights reserved.
- Published
- 2017
- Full Text
- View/download PDF
39. Overview of Recent Work on Laser Excitation of Positronium for the Formation of Antihydrogen
- Author
-
J. Fesel, P. Yzombard, Z. Mazzotta, Giovanni Cerchiari, Alban Kellerbauer, Romualdo Santoro, G. Nebbia, Matveev, P. Bräunig, Alberto Rotondi, Andrea Fontana, Antonio Ereditato, Lagomarsino, Sebastiano Mariazzi, Giovanni Consolati, Germano Bonomi, Ole Røhne, L. Ravelli, Ph. Lebrun, H. Holmestad, Massimo Caccia, M. Sacerdoti, Lillian Smestad, D. Krasnický, A. Demetrio, L. Cabaret, Marco Prevedelli, Davide Pagano, Marco Giammarchi, C. Evans, Heidi Sandaker, Felice Sorrentino, I. C. Tietje, T. Huse, M. Oberthaler, I. M. Strojek, G. Testera, Angela Gligorova, S. Haider, Petracek, L. Di Noto, Patrick Nedelec, Nicola Zurlo, Fabrizio Castelli, Johann Zmeskal, Tomoko Ariga, Michael Doser, Rafael Ferragut, S. Vamosi, Paola Scampoli, Claude Amsler, Luca Penasa, Nicola Pacifico, Chloé Malbrunot, Sebastian Gerber, F. Guatieri, P. Lansonneur, Daniel Comparat, F. Prelz, B. Rienaecker, C. Pistillo, Ruggero Caravita, R. S. Brusa, E. Widmann, Laboratoire Aimé Cotton (LAC), École normale supérieure - Cachan (ENS Cachan)-Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), Institut de Physique Nucléaire de Lyon (IPNL), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Yasuyuki Matsuda, Yzombard, P., Amsler, C., Ariga, T., Bonomi, G., Bräunig, P., Brusa, R. S., Cabaret, L., Caccia, M., Caravita, R., Castelli, F., Cerchiari, G., Comparat, D., Consolati, G., Demetrio, A., Di Noto, L., Doser, M., Ereditato, A., Evans, C., Ferragut, R., Fesel, J., Fontana, A., Gerber, S., Giammarchi, M., Gligorova, A., Guatieri, F., Haider, S., Holmestad, H., Huse, T., Kellerbauer, A., Krasnický, D., Lagomarsino, V., Lansonneur, P., Lebrun, P., Malbrunot, C., Mariazzi, S., Matveev, V., Mazzotta, Z., Nebbia, G., Nedelec, P., Oberthaler, M., Pacifico, N., Pagano, D., Penasa, L., Petracek, V., Pistillo, C., Prelz, F., Prevedelli, Marco, Ravelli, L., Rienaecker, B., Røne, O. M., Rotondi, A., Sacerdoti, M., Sandaker, H., Santoro, R., Scampoli, P., Smestad, L., Sorrentino, F., Strojek, I. M., Testera, G., Tietje, I. C., Vamosi, S., Widmann, E., Zmeskal, J., Zurlo, N., Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11)-École normale supérieure - Cachan (ENS Cachan), Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), and Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)
- Subjects
Work (thermodynamics) ,CERN Lab ,antihydrogen: beam ,Positronium laser cooling ,Positronium ,7. Clean energy ,01 natural sciences ,010305 fluids & plasmas ,law.invention ,laser excitation ,Nuclear physics ,antihydrogen: formation ,Physics in General ,law ,0103 physical sciences ,Physics::Atomic and Molecular Clusters ,Positronium laser excitation ,Physics::Atomic Physics ,anti-matter, laser excitation ,positronium: excited state ,010306 general physics ,Antihydrogen ,Physics ,Positronium, Antihydrogen, Laser-matter interaction, Positronium laser excitation, Positronium laser cooling, anions laser cooling ,Condensed Matter::Quantum Gases ,anions laser cooling ,atom ,antihydrogen: production ,Laser ,charge exchange ,[PHYS.PHYS.PHYS-GEN-PH]Physics [physics]/Physics [physics]/General Physics [physics.gen-ph] ,anti-p ,laser ,Laser-matter interaction ,anti-matter ,gravitation ,Physics::Accelerator Physics ,Excitation - Abstract
International audience; The AEgIS experiment carried out at CERN aims to form a cold antihydrogen beam to perform precision studies on gravity. A key ingredient is the creation of antihydrogen via a charge-exchange process between trapped antiprotons and Rydberg excited positronium atoms (Ps). In the present, the latest results of laser excitation of Ps are reviewed, as well as studies on a possible laser manipulation and cooling of Ps and antiprotons.
- Published
- 2017
- Full Text
- View/download PDF
40. Positronium for Antihydrogen Production in the AEGIS Experiment
- Author
-
Heidi Sandaker, G. Nebbia, Eberhard Widmann, V. Lagomarsino, Sebastian Gerber, Z. Mazzotta, S.R. Müller, Markus K. Oberthaler, Romualdo Santoro, M. Fanì, F. Guatieri, B. Rienaecker, Alban Kellerbauer, P. Yzombard, Alberto Rotondi, Sebastiano Mariazzi, L. Di Noto, A. Hinterberger, Ole Røhne, A. Demetrio, Claude Amsler, Daniel Comparat, Giovanni Consolati, C. Evans, L. Smestad, Germano Bonomi, Massimo Caccia, Johann Marton, Nicola Zurlo, Rafael Ferragut, Andrea Fontana, V. Petráček, Nicola Pacifico, C. Malbrunot, Ruggero Caravita, O. Khalidova, D. Krasnicky, Felice Sorrentino, V. A. Matveev, Marco Giammarchi, P. Lansonneur, F. Prelz, Stefano Aghion, R. S. Brusa, J. Fesel, Patrick Nedelec, Johann Zmeskal, Giovanni Cerchiari, Luca Penasa, Marco Prevedelli, H. Holmestad, I. C. Tietje, S. Haider, G. Testera, Fabrizio Castelli, Michael Doser, Angela Gligorova, P. Lebrun, J. Robert, L. Ravelli, Davide Pagano, C. Zimmer, Laboratoire Aimé Cotton (LAC), École normale supérieure - Cachan (ENS Cachan)-Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), Institut de Physique Nucléaire de Lyon (IPNL), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11)-École normale supérieure - Cachan (ENS Cachan), Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Consolati, G., Aghion, S., Amsler, C., Bonomi, G., Brusa, R. S., Caccia, M., Caravita, R., Castelli, F., Cerchiari, G., Comparat, D., Demetrio, A., Di Noto, L., Doser, M., Evans, C., Fanì, M., Ferragut, R., Fesel, J., Fontana, A., Gerber, S., Giammarchi, M., Gligorova, A., Guatieri, F., Haider, S., Hinterberger, A., Holmestad, H., Kellerbauer, A., Khalidova, O., Krasnicky, D., Lagomarsino, V., Lansonneur, P., Lebrun, P., Malbrunot, C., Mariazzi, S., Marton, J., Matveev, V., Mazzotta, Z., Müller, S. R., Nebbia, G., Nedelec, P., Oberthaler, M., Pacifico, N., Pagano, D., Penasa, L., Petracek, V., Prelz, F., Prevedelli, M., Ravelli, L., Rienaecker, B., Robert, J., Røhne, O. M., Rotondi, A., Sandaker, H., Santoro, R., Smestad, L., Sorrentino, F., Testera, G., Tietje, I. C., Widmann, E., Yzombard, P., Zimmer, C., Zmeskal, J., and Zurlo, N.
- Subjects
Physics::General Physics ,experimental methods ,CERN Lab ,talk: Lublin 2017/08/28 ,General Physics and Astronomy ,anti-p: acceleration ,Gravitational acceleration ,7. Clean energy ,01 natural sciences ,anti-p p: annihilation ,Nuclear physics ,symbols.namesake ,Physics and Astronomy (all) ,0103 physical sciences ,antimatter ,[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex] ,Physics::Atomic Physics ,positronium: excited state ,anti-p: beam ,010306 general physics ,Antihydrogen ,Physics ,010308 nuclear & particles physics ,antihydrogen: production ,Antiproton Decelerator ,positronium: target ,Antiproton ,Antimatter ,Excited state ,gravitation: acceleration ,Rydberg formula ,symbols ,proposed experiment ,Rydberg state ,gravity, antimatter ,Particle Physics - Experiment - Abstract
International audience; The primary goal of the Antihydrogen Experiment: Gravity, Interferometry, Spectroscopy (AEGIS) collaboration is to measure for the first time precisely the gravitational acceleration of antihydrogen, H¯ , a fundamental issue of contemporary physics, using a beam of antiatoms. Indeed, although indirect arguments have been raised against a different acceleration of antimatter with respect to matter, nevertheless some attempts to formulate quantum theories of gravity, or to unify gravity with the other forces, consider the possibility of a non-identical gravitational interaction between matter and antimatter. We plan to generate H¯ through a charge-exchange reaction between excited Ps and antiprotons coming from the Antiproton Decelerator facility at CERN. It offers the advantage to produce sufficiently cold antihydrogen to make feasible a measurement of gravitational acceleration with reasonable uncertainty (of the order of a few percent). Since the cross-section of the above reaction increases with n 4 , n being the principal quantum number of Ps, it is essential to generate Ps in a highly excited (Rydberg) state. This will occur by means of two laser excitations of Ps emitted from a nanoporous silica target: a first UV laser (at 205 nm) will bring Ps from the ground to the n = 3 state; a second laser pulse (tunable in the range 1650–1700 nm) will further excite Ps to the Rydberg state.
- Published
- 2017
- Full Text
- View/download PDF
41. Laser excitation of then=3level of positronium for antihydrogen production
- Author
-
B. Rienäcker, Roberto S. Brusa, S. Vamosi, V. Petracek, Luca Penasa, I. L. Jernelv, Giovanni Cerchiari, L. Cabaret, Alberto Rotondi, T. Huse, L. Di Noto, Paola Scampoli, G. Nebbia, M. Sacerdoti, James William Storey, Sergei Gninenko, Claude Amsler, Marco Prevedelli, V. Lagomarsino, I. C. Tietje, Simone Cialdi, M. Kimura, Adriano Fontana, E. Jordan, Sebastian Gerber, Heidi Sandaker, K. Chlouba, Sebastiano Mariazzi, Giovanni Consolati, Germano Bonomi, A. Demetrio, F. Guatieri, Massimo Caccia, M. Spacek, L. Resch, Nicola Zurlo, C. Evans, P. Bräunig, J. Bremer, F. Prelz, Viktor Matveev, E. Widmann, C. Pistillo, Ruggero Caravita, Akitaka Ariga, Ola Kenji Forslund, Davide Pagano, Rafael Ferragut, S. Haider, Daniel Comparat, Alexey Dudarev, J. Fesel, Ole Røhne, Romualdo Santoro, Stefano Aghion, Marco Giammarchi, Sebastian Lehner, Z. Mazzotta, Felice Sorrentino, Alban Kellerbauer, Chloé Malbrunot, P. Lebrun, D. Krasnicky, L. Marx, Nicola Pacifico, P. Lansonneur, L. Ravelli, I. M. Strojek, T. Koettig, Lillian Smestad, H. Holmestad, Antonio Ereditato, Tomoko Ariga, G. Testera, Fabrizio Castelli, Patrick Nedelec, Michael Doser, Johann Zmeskal, J. Liberadzka, M. Oberthaler, Angela Gligorova, P. Yzombard, Aghion, S., Amsler, C., Ariga, A., Ariga, T., Bonomi, G., Bräunig, P., Bremer, J., Brusa, R. S., Cabaret, L., Caccia, M., Caravita, R., Castelli, F., Cerchiari, G., Chlouba, K., Cialdi, S., Comparat, D., Consolati, G., Demetrio, A., Di Noto, L., Doser, M., Dudarev, A., Ereditato, A., Evans, C., Ferragut, R., Fesel, J., Fontana, A., Forslund, O. K., Gerber, S., Giammarchi, M., Gligorova, A., Gninenko, S., Guatieri, F., Haider, S., Holmestad, H., Huse, T., Jernelv, I. L., Jordan, E., Kellerbauer, A., Kimura, M., Koettig, T., Krasnicky, D., Lagomarsino, V., Lansonneur, P., Lebrun, P., Lehner, S., Liberadzka, J., Malbrunot, C., Mariazzi, S., Marx, L., Matveev, V., Mazzotta, Z., Nebbia, G., Nedelec, P., Oberthaler, M., Pacifico, N., Pagano, D., Penasa, L., Petracek, V., Pistillo, C., Prelz, F., Prevedelli, Marco, Ravelli, L., Resch, L., Rienäcker, B., Røhne, O. M., Rotondi, A., Sacerdoti, M., Sandaker, H., Santoro, R., Scampoli, P., Smestad, L., Sorrentino, F., Spacek, M., Storey, J., Strojek, I. M., Testera, G., Tietje, I., Vamosi, S., Widmann, E., Yzombard, P., Zmeskal, J., Zurlo, N., Prevedelli, M., Scampoli, Paola, Laboratoire Aimé Cotton (LAC), Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11)-École normale supérieure - Cachan (ENS Cachan), Institut de Physique Nucléaire de Lyon (IPNL), Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), and AEGIS
- Subjects
COLLISIONS ,Atomic and Molecular Physics, and Optics, ANNIHILATION LIFETIME ,SLOW POSITRONS ,TRANSITION ,PHYSICS ,ANTIPROTONS ,TRANSPORT ,PLASMA ,STATES ,530 Physics ,Spectroscopy, particle physics ,01 natural sciences ,010305 fluids & plasmas ,law.invention ,Positronium ,Nuclear physics ,law ,Atomic and Molecular Physics ,0103 physical sciences ,Physics::Atomic and Molecular Clusters ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,Physics::Atomic Physics ,010306 general physics ,Antihydrogen ,Physics ,Plasma ,Laser ,Atomic and Molecular Physics, and Optics ,Antiproton ,and Optics ,Atomic physics ,ANNIHILATION LIFETIME ,Particle Physics - Experiment ,Excitation - Abstract
We demonstrate laser excitation of the n=3 state of positronium (Ps) in vacuum. A specially designed high-efficiency pulsed slow positron beam and single shot positronium annihilation lifetime spectroscopy were used to produce and detect Ps. Pulsed laser excitation of n=3 level at 205 nm was monitored via Ps photoionization induced by a second intense laser pulse at 1064 nm. About 15% of the overall positronium emitted in vacuum was excited to n=3 and photoionized. Saturation of both the n=3 excitation and the following photoionization was observed and is explained by a simple rate equation model. Scanning the laser frequency allowed us to extract the positronium transverse temperature related to the width of the Doppler-broadened line. Moreover, preliminary observation of excitation to Rydberg states (n = 15...17) using n=3 as intermediate level was observed, giving an independent confirmation of efficient excitation to the 33P state. We demonstrate the laser excitation of the n=3 state of positronium (Ps) in vacuum. A combination of a specially designed pulsed slow positron beam and a high-efficiency converter target was used to produce Ps. Its annihilation was recorded by single-shot positronium annihilation lifetime spectroscopy. Pulsed laser excitation of the n=3 level at a wavelength λ≈205 nm was monitored via Ps photoionization induced by a second intense laser pulse at λ=1064 nm. About 15% of the overall positronium emitted into vacuum was excited to n=3 and photoionized. Saturation of both the n=3 excitation and the following photoionization was observed and explained by a simple rate equation model. The positronium's transverse temperature was extracted by measuring the width of the Doppler-broadened absorption line. Moreover, excitation to Rydberg states n=15 and 16 using n=3 as the intermediate level was observed, giving an independent confirmation of excitation to the $3^{3}P$ state.
- Published
- 2016
- Full Text
- View/download PDF
42. Probing antimatter gravity – The AEGIS experiment at CERN
- Author
-
Giovanni Consolati, G. Nebbia, Germano Bonomi, Tomoko Ariga, M. Spacek, Antonio Ereditato, Sebastiano Mariazzi, L. Smestad, Romualdo Santoro, L. Cabaret, Z. Mazzotta, Rafael Ferragut, Sandra Zavatarelli, T. Huse, Alban Kellerbauer, M. Oberthaler, Angela Gligorova, Sebastian Lehner, Patrick Nedelec, Johann Zmeskal, P. Lebrun, F. Prelz, C. Pistillo, T. Koettig, J. Liberadzka, Paola Scampoli, L. Ravelli, James William Storey, Ruggero Caravita, M. Kimura, H. Holmestad, V. A. Matveev, Claude Amsler, Marco Giammarchi, Davide Pagano, Felice Sorrentino, P. Lansonneur, Adriano Fontana, P. Yzombard, G. Testera, Daniel Comparat, I. M. Strojek, M. Sacerdoti, Fabrizio Castelli, D. Krasnický, S. Haider, Nicola Zurlo, A. Demetrio, Michael Doser, Marco Prevedelli, C. Evans, I. C. Tietje, Massimo Caccia, K. Chlouba, N. Pacifico, Stefano Aghion, Giovanni Cerchiari, Luca Penasa, Eberhard Widmann, Sebastian Gerber, P. Bräunig, V. Lagomarsino, F. Guatieri, B. Rienäcker, Roberto S. Brusa, Chloé Malbrunot, V. Petracek, Simone Cialdi, E. Jordan, L. Di Noto, J. Fesel, Akitaka Ariga, J. Bremer, Alexey Dudarev, Alberto Rotondi, Heidi Sandaker, Ole Røhne, Laboratoire Aimé Cotton (LAC), Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11)-École normale supérieure - Cachan (ENS Cachan), Institut de Physique Nucléaire de Lyon (IPNL), Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), AEGIS, Bravina, L., Foka Y., Kabana S., Kellerbauer, A., Aghion, S., Amsler, C., Ariga, A., Ariga, T., Bonomi, G., Bräunig, P., Bremer, J., Brusa, R. S., Cabaret, L., Caccia, M., Caravita, R., Castelli, F., Cerchiari, G., Chlouba, K., Cialdi, S., Comparat, D., Consolati, G., Demetrio, A., Di Noto, L., Doser, M., Dudarev, A., Ereditato, A., Evans, C., Ferragut, R., Fesel, J., Fontana, A., Gerber, S., Giammarchi, M., Gligorova, A., Guatieri, F., Haider, S., Holmestad, H., Huse, T., Jordan, E., Kimura, M., Koettig, T., Krasnický, D., Lagomarsino, V., Lansonneur, P., Lebrun, P., Lehner, S., Liberadzka, J., Malbrunot, C., Mariazzi, S., Matveev, V., Mazzotta, Z., Nebbia, G., Nédélec, P., Oberthaler, M., Pacifico, N., Pagano, D., Penasa, L., Petráček, V., Pistillo, C., Prelz, F., Prevedelli, M., Ravelli, L., Rienäcker, B., Røhne, O.M., Rotondi, A., Sacerdoti, M., Sandaker, H., Santoro, R., Scampoli, P., Smestad, L., Sorrentino, F., Špaček, M., Storey, J., Strojek, I.M., Testera, G., Tietje, I., Widmann, E., Yzombard, P., Zavatarelli, S., Zmeskal, J., Zurlo, N., Røhne, O. M., and Strojek, I. M.
- Subjects
Physics ,Atom interferometer ,Particle physics ,Physics::General Physics ,010308 nuclear & particles physics ,General Relativity and Cosmology ,QC1-999 ,01 natural sciences ,Antiproton Decelerator ,Nuclear physics ,Physics and Astronomy (all) ,Physics and Astronomy. Antimatter. Antiprotons. Gravitational acceleration ,Gravitational field ,Deflection (physics) ,Antiproton ,Antimatter ,0103 physical sciences ,[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex] ,Physics::Atomic Physics ,Equivalence principle ,gravity, antimatter ,010306 general physics ,Antihydrogen - Abstract
International audience; The weak equivalence principle states that the motion of a body in a gravitational field is independent of its structure or composition. This postulate of general relativity has been tested to very high precision with ordinary matter, but no relevant experimental verification with antimatter has ever been carried out. The AEGIS experiment will measure the gravitational acceleration of antihydrogen to ultimately 1% precision. For this purpose, a pulsed horizontal antihydrogen beam with a velocity of several 100 m s−1 will be produced. Its vertical deflection due to gravity will be detected by a setup consisting of material gratings coupled with a position-sensitive detector, operating as a moiré deflectometer or an atom interferometer. The AEGIS experiment is installed at CERN’s Antiproton Decelerator, currently the only facility in the world which produces copious amounts of low-energy antiprotons. The construction of the setup has been going on since 2010 and is nearing completion. A proof-of-principle experiment with antiprotons has demonstrated that the deflection of antiparticles by a few μm due to an external force can be detected. Technological and scientific development pertaining to specific challenges of the experiment, such as antihydrogen formation by positronium charge exchange or the position-sensitive detection of antihydrogen annihilations, is ongoing.
- Published
- 2016
- Full Text
- View/download PDF
43. Positron manipulation and positronium laser excitation in AEgIS
- Author
-
Daniel Comparat, Sandra Zavatarelli, Marco Giammarchi, Laura Resch, Giovanni Consolati, Giovanni Cerchiari, Germano Bonomi, M. Sacerdoti, F. Sorrentino, M. Spacek, G. Nebbia, Angela Gligorova, P. Lebrun, Marco Prevedelli, M. Kimura, H. Holmestad, P. Lansonneur, S. Haider, Heidi Sandaker, I. C. Tietje, Paola Scampoli, F. Prelz, James William Storey, T. Kaltenbacher, G. Testera, Tomoko Ariga, N. Pacifico, A. Demetrio, Stefan Rosenberger, Viktor Matveev, C. Evans, Romualdo Santoro, L. Ravelli, Markus K. Oberthaler, Karl Chlouba, Luca Penasa, Fabrizio Castelli, Davide Pagano, Simone Cialdi, Claude Amsler, Michael Doser, E. Jordan, Daniel Krasnicky, Alberto Rotondi, C. Pistillo, Ruggero Caravita, Ola Kenji Forslund, Sebastiano Mariazzi, Patrick Nedelec, Lea Di Noto, Adriano Fontana, P. Yzombard, Johann Zmeskal, Sebastian Gerber, L. Cabaret, T. Huse, J. Liberadzka, F. Guatieri, B. Rienäcker, Roberto S. Brusa, S. Vamosi, V. Petracek, Sebastian Lehner, Izabela M Strojek, Antonio Ereditato, Alexey Dudarev, J. Fesel, S. Gninenko, Z. Mazzotta, Alban Kellerbauer, Chloé Malbrunot, Lisa Marx, Ole Røhne, Rafael Ferragut, Ine L Jernelv, Akitaka Ariga, P. Bräunig, J. Bremer, Stefano Aghion, Eberhard Widmann, V. Lagomarsino, Torsten Koetting, Massimo Caccia, Mariazzi, S., Caravita, R., Aghion, S., Amsler, C., Ariga, A., Ariga, T., Bonomi, G., Braunig, P., Bremer, J., Brusa, R. S., Cabaret, L., Caccia, M., Castelli, F., Cerchiari, G., Chlouba, K., Cialdi, S., Comparat, D., Consolati, G., Demetrio, A., Di Noto, L., Doser, M., Dudarev, A., Ereditato, A., Evans, C., Ferragut, R., Fesel, J., Fontana, A., Forslund, O. K., Gerber, S., Giammarchi, M., Gligorova, A., Gninenko, S., Guatieri, F., Haider, S., Holmestad, H., Huse, T., Jernelv, I. L., Jordan, E., Kaltenbacher, T., Kellerbauer, A., Kimura, M., Koetting, T., Krasnicky, D., Lagomarsino, V., Lansonneur, P., Lebrun, P., Lehner, S., Liberadzka, J., Malbrunot, C., Marx, L., Matveev, V., Mazzotta, Z., Nebbia, G., Nedelec, P., Oberthaler, M., Pacifico, N., Pagano, D., Penasa, L., Petracek, V., Pistillo, C., Prelz, F., Prevedelli, M., Ravelli, L., Resch, L., Rienacker, B., Rohne, O. M., Rosenberger, S., Rotondi, A., Sacerdoti, M., Sandaker, H., Santoro, R., Scampoli, P., Sorrentino, F., Spacek, M., Storey, J., Strojek, I. M., Testera, G., Tietje, I., Vamosi, S., Widmann, E., Yzombard, P., Zavatarelli, S., and Zmeskal, J.
- Subjects
Positron ,Positronium ,Radiation ,Materials Science (all) ,Condensed Matter Physics ,01 natural sciences ,010305 fluids & plasmas ,law.invention ,symbols.namesake ,law ,0103 physical sciences ,Physics::Atomic and Molecular Clusters ,General Materials Science ,Physics::Atomic Physics ,010306 general physics ,Antihydrogen ,Physics ,Laser ,Excited state ,Antimatter ,Rydberg formula ,symbols ,Atomic physics ,Excitation - Abstract
Production of antihydrogen by using the charge exchange reaction, as proposed by AEgIS (Antimatter Experiment: gravity, Interferometry, Spectroscopy), requires the formation of a dense cloud of positronium atoms excited to Rydberg states. In this work, the recent advances in AEgIS towards this result are described. Namely, the manipulation of positrons to produce bunches containing more than 108 particles and the laser excitation of positronium to Rydberg states, using n=3 as intermediate level, are presented.
- Published
- 2016
44. Emulsion detectors for the antihydrogen detection in AEgIS
- Author
-
G. Testera, Ole Røhne, S. N. Gninenko, Fabrizio Castelli, M. Subieta, Michael Doser, M. C. Simon, C. Pistillo, Paola Scampoli, James William Storey, Claude Amsler, Giovanni Consolati, Ruggero Caravita, Patrick Nedelec, Akitaka Ariga, H. Holmestad, Germano Bonomi, K. Chlouba, Johann Zmeskal, M. Spacek, L. Cabaret, G. Nebbia, T. Huse, Chloé Malbrunot, P. Bräunig, S. Rosenberger, H. Derking, F. Prelz, J. Bremer, Marco Giammarchi, V. A. Matveev, Sebastiano Mariazzi, Alexey Dudarev, Rafael Ferragut, Daniel Comparat, Z. Mazzotta, Alban Kellerbauer, Sebastian Gerber, Stefano Aghion, Simone Cialdi, Sebastian Lehner, S. D. Hogan, E. Jordan, A. S. Belov, S. Haider, N. Pacifico, M. Oberthaler, Luca Penasa, Angela Gligorova, P. Yzombard, Antonio Ereditato, Cristina Riccardi, Tomoko Ariga, L. Ravelli, I. M. Strojek, Massimo Caccia, V. Petráček, Eberhard Widmann, V. Lagomarsino, Jiro Kawada, L. Di Noto, Sandra Zavatarelli, Marco Prevedelli, Romualdo Santoro, M. Kimura, D. Krasnický, A. Demetrio, Heidi Sandaker, Alberto Rotondi, Andrea Fontana, Giovanni Cerchiari, R. S. Brusa, Pistillo, C, Aghion, S., Amsler, C., Ariga, A., Ariga, T., Belov, A., Bonomi, G., Bräunig, P., Bremer, J., Brusa, R. S., Cabaret, L., Caccia, M., Caravita, R., Castelli, F., Cerchiari, G., Chlouba, K., Cialdi, S., Comparat, D., Consolati, G., Demetrio, A., Derking, H., Di Noto, L., Doser, M., Dudarev, A., Ereditato, A., Ferragut, R., Fontana, A., Gerber, S., Giammarchi, M., Gligorova, A., Gninenko, S., Haider, S., Hogan, S., Holmestad, H., Huse, T., Jordan, E. J., Kawada, J., Kellerbauer, A., Kimura, M., Krasnický, D., Lagomarsino, V., Lehner, S., Malbrunot, C., Mariazzi, S., Matveev, V., Mazzotta, Z., Nebbia, G., Nédélec, P., Oberthaler, M., Pacifico, N., Penasa, L., Petráček, V., Prelz, F., Prevedelli, M., Ravelli, L., Riccardi, C., Røhne, O., Rosenberger, S., Rotondi, A., Sandaker, H., Santoro, R., Scampoli, Paola, Simon, M., Špaček, M., Storey, J., Strojek, I. M., Subieta, M., Testera, G., Widmann, E., Yzombard, P., Zavatarelli, S., Zmeskal, J., Laboratoire Aimé Cotton (LAC), Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11)-École normale supérieure - Cachan (ENS Cachan), Institut de Physique Nucléaire de Lyon (IPNL), Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), and AEGIS
- Subjects
Nuclear and High Energy Physics ,Physics::General Physics ,Antimatter ,Atomic and Molecular Physics, and Optic ,530 Physics ,Physics::Instrumentation and Detectors ,Condensed Matter Physic ,01 natural sciences ,Nuclear physics ,Gravitational field ,Atomic and Molecular Physics ,0103 physical sciences ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,Physical and Theoretical Chemistry ,010306 general physics ,Antihydrogen ,Nuclear and High Energy Physic ,Physics ,Large Hadron Collider ,010308 nuclear & particles physics ,Emulsion ,Detector ,Gravitational interaction ,Emulsions ,Condensed Matter Physics ,Atomic and Molecular Physics, and Optics ,and Optics ,Beam (structure) - Abstract
see paper for full list of authors; International audience; The AEgIS experiment at CERN aims to perform the first direct measurement of gravitational interaction between matter and antimatter by measuring the deviation of a cold antihydrogen beam in the Earth gravitational field. The design of the experiment has been recently updated to include emulsion films as position sensitive detector. The submicrometric position accuracy of emulsions leads indeed to a significant improvement of the experimental sensitivity. We present results of preliminary tests and discuss perspectives for the final measurement.
- Published
- 2015
- Full Text
- View/download PDF
45. Particle tracking at cryogenic temperatures: the Fast Annihilation Cryogenic Tracking (FACT) detector for the AEgIS antimatter gravity experiment
- Author
-
Sandra Zavatarelli, Tomoko Ariga, Andrea Fontana, Giovanni Consolati, Marco Prevedelli, Chloé Malbrunot, Germano Bonomi, L. Ravelli, M. Spacek, G. Nebbia, S. N. Gninenko, S. Haider, Sebastiano Mariazzi, Simone Cialdi, J. Bremer, L. Cabaret, I. M. Strojek, T. Huse, E. Jordan, A. S. Belov, Ole Røhne, Sebastian Gerber, M. Kimura, Markus K. Oberthaler, S. D. Hogan, Heidi Sandaker, Rafael Ferragut, P. Scampoli, C. Pistillo, F. Prelz, Marco Giammarchi, Ruggero Caravita, Giovanni Cerchiari, Alberto Rotondi, K. Chlouba, Romualdo Santoro, Z. Mazzotta, Akitaka Ariga, James William Storey, Alban Kellerbauer, Daniel Comparat, Alexey Dudarev, V. A. Matveev, Claude Amsler, R. Vaccarone, Patrick Nedelec, Johann Zmeskal, H. Derking, M. Subieta, Angela Gligorova, P. Yzombard, N. Pacifico, Stefano Aghion, R. S. Brusa, Luca Penasa, P. Bräunig, Alice Magnani, Sebastian Lehner, Eberhard Widmann, V. Lagomarsino, Massimo Caccia, V. Petráček, Jiro Kawada, L. Di Noto, M. C. Simon, S. Rosenberger, H. Holmestad, D. Krasnicky, Antonio Ereditato, G. Testera, Cristina Riccardi, Fabrizio Castelli, Michael Doser, Storey, J., Aghion, S., Amsler, C., Ariga, A., Ariga, T., Belov, A., Bonomi, G., Braunig, P., Bremer, J., Brusa, R., Cabaret, L., Caccia, M., Caravita, R., Castelli, F., Cerchiari, G., Chlouba, K., Cialdi, S., Comparat, D., Consolati, G., Derking, H., Di Noto, L., Doser, M., Dudarev, A., Ereditato, A., Ferragut, R., Fontana, A., Gerber, S., Giammarchi, M., Gligorova, A., Gninenko, S., Haider, S., Hogan, S., Holmestad, H., Huse, T., Jordan, E. J., Kawada, J., Kellerbauer, A., Kimura, M., Krasnicky, D., Lagomarsino, V., Lehner, S., Magnani, A., Malbrunot, C., Mariazzi, S., Matveev, V., Mazzotta, Z., Nebbia, G., Nedelec, P., Oberthaler, M., Pacifico, N., Penasa, L., Petracek, V., Pistillo, C., Prelz, F., Prevedelli, M., Ravelli, L., Riccardi, C., Rohne, O. M., Rosenberger, S., Rotondi, A., Sandaker, H., Santoro, R., Scampoli, P., Simon, M., Spacek, M., Strojek, I. M., Subieta, M., Testera, G., Vaccarone, R., Widmann, E., Yzombard, P., Zavatarelli, S., Zmeskal, J., Institut de Physique Nucléaire de Lyon (IPNL), Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), and AEgIS
- Subjects
Atom interferometer ,gas and liquid scintillators) ,Physics::Instrumentation and Detectors ,530 Physics ,Context (language use) ,Cryogenics ,Tracking (particle physics) ,Nuclear physics ,Particle tracking detectors ,Scintillators, scintillation and light emission processes (solid, gas and liquid scintillators) ,Silicon photomultiplier ,Physics::Atomic and Molecular Clusters ,Physics::Atomic Physics ,Detectors and Experimental Techniques ,Antihydrogen ,Instrumentation ,Mathematical Physics ,Physics ,Detector ,antimatter. scintillating fibers ,[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] ,Particle tracking detector ,antimatter. scintillating fibers, silicon photomultipliers ,scintillation and light emission processes (solid ,Scintillators ,Antimatter ,silicon photomultipliers - Abstract
see paper for full list of authors; International audience; The AEgIS experiment is an interdisciplinary collaboration between atomic, plasma and particle physicists, with the scientific goal of performing the first precision measurement of the Earth's gravitational acceleration on antimatter. The principle of the experiment is as follows: cold antihydrogen atoms are synthesized in a Penning-Malmberg trap and are Stark accelerated towards a moiré deflectometer, the classical counterpart of an atom interferometer, and annihilate on a position sensitive detector. Crucial to the success of the experiment is an antihydrogen detector that will be used to demonstrate the production of antihydrogen and also to measure the temperature of the anti-atoms and the creation of a beam. The operating requirements for the detector are very challenging: it must operate at close to 4 K inside a 1 T solenoid magnetic field and identify the annihilation of the antihydrogen atoms that are produced during the 1 μs period of antihydrogen production. Our solution—called the FACT detector—is based on a novel multi-layer scintillating fiber tracker with SiPM readout and off the shelf FPGA based readout system. This talk will present the design of the FACT detector and detail the operation of the detector in the context of the AEgIS experiment.
- Published
- 2015
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.