1. A granular variant of CD63 is a regulator of repeated human mast cell degranulation.
- Author
-
Schäfer, T., Starkl, P., Allard, C., Wolf, R. M., and Schweighoffer, T.
- Subjects
MAST cells ,ALLERGIES ,ANTIGENS ,HEMATOPOIETIC growth factors ,IMMUNOGLOBULIN E - Abstract
To cite this article: Schäfer T, Starkl P, Allard C, Wolf RM, Schweighoffer T. A granular variant of CD63 is a regulator of repeated human mast cell degranulation. Allergy 2010; 65: 1242–1255. Background: Mast cells are secretory immune cells whose degranulation can provoke acute allergic reactions. It is presently unclear, however, whether an individual mast cell can repeatedly degranulate or turns dysfunctional after a single antigen stimulus. This work thus aims to better define the mast cell life cycle, with particular focus on new target structures for therapeutic or diagnostic approaches in allergy. Methods: Monoclonal antibodies were raised against degranulated cord blood-derived human mast cells. A subset of these antibodies that exclusively recognized degranulated mast cells, but did not cross-react with quiescent mast cells or other hematopoietic cell types, became key reagents in subsequent experiments. Results: We identified a granular variant of tetraspanin CD63 as an exclusive molecular marker of degranulated human mast cells. Mutant analyses indicate that a cysteine cluster around residue C170 and protein glycosylation at residue N172 account for the antibody specificity. Here, we show that mast cells, which underwent an initial FcεRI-mediated degranulation, can be degranulated for at least another cycle in vitro. Repeated degranulation, however, requires an IgE/antigen stimulus that differs from the preceding one. Furthermore, the new variant-specific anti-CD63 antibodies effectively impair repeated cycles of mast cell degranulation. Conclusion: Our findings indicate that mast cells are stable, multiple-use cells, which are capable of surviving and delivering several consecutive hits. Surface expression of the novel CD63 variant is a distinguishing feature of such primed cells. Reagents directed against this molecular hallmark may thus become valuable diagnostic and therapeutic agents. [ABSTRACT FROM AUTHOR]
- Published
- 2010
- Full Text
- View/download PDF