1. Anti-infective therapy using species-specific activators of Staphylococcus aureus ClpP.
- Author
-
Wei, Bingyan, Zhang, Tao, Wang, Pengyu, Pan, Yihui, Li, Jiahui, Chen, Weizhong, Zhang, Min, Ji, Quanjiang, Wu, Wenjuan, Lan, Lefu, Gan, Jianhua, and Yang, Cai-Guang
- Subjects
METHICILLIN-resistant staphylococcus aureus ,STAPHYLOCOCCUS aureus ,STAPHYLOCOCCAL diseases ,ENANTIOMERS ,SKIN infections ,ANTIBIOTICS - Abstract
The emergence of methicillin-resistant Staphylococcus aureus isolates highlights the urgent need to develop more antibiotics. ClpP is a highly conserved protease regulated by ATPases in bacteria and in mitochondria. Aberrant activation of bacterial ClpP is an alternative method of discovering antibiotics, while it remains difficult to develop selective Staphylococcus aureus ClpP activators that can avoid disturbing Homo sapiens ClpP functions. Here, we use a structure-based design to identify (R)- and (S)-ZG197 as highly selective Staphylococcus aureus ClpP activators. The key structural elements in Homo sapiens ClpP, particularly W146 and its joint action with the C-terminal motif, significantly contribute to the discrimination of the activators. Our selective activators display wide antibiotic properties towards an array of multidrug-resistant staphylococcal strains in vitro, and demonstrate promising antibiotic efficacy in zebrafish and murine skin infection models. Our findings indicate that the species-specific activators of Staphylococcus aureus ClpP are exciting therapeutic agents to treat staphylococcal infections. The development of selective ClpP activators targeting only the MRSA isolates without interfering with the human variant is currently challenging. Here, the authors report on the structure-based design of enantiomers of ZG197 and identify the discriminator factor between the proteins. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF