1. Green synthesis of aminated hyaluronic acid-based silver nanoparticles on modified titanium dioxide surface: Influence of size and chemical composition on their biological properties.
- Author
-
Stoian M, Kuncser A, Neatu F, Florea M, Popa M, Voicu SN, Chifiriuc MC, Hanganu A, Anghel ME, and Tudose M
- Subjects
- Hyaluronic Acid chemistry, Silver pharmacology, Silver chemistry, Antioxidants, Anti-Bacterial Agents chemistry, Metal Nanoparticles chemistry, Anti-Infective Agents
- Abstract
This is the first report on an efficient, "environmentally friendly" chemical reduction method for the synthesis of aminated hyaluronic acid-based silver nanoparticles on the modified surface of titanium dioxide nanoparticles aimed for biological applications. Silver nanoparticles exhibit well-known physical-chemical and optical properties appropriate for different biological applications. Modifying the nanoparticles leads to a change in their expected bioactivity. This represents an important topic for the current research. We have developed a novel aminated hyaluronic acid (HA-EDA)-based protocol to obtain silver nanoparticles, in which HA-EDA was used for the first time as a reducing and stabilizing agent. The effect of the size of silver nanoparticles on the titanium dioxide surface and the chemical composition of the obtained materials were investigated by TEM, XRD, XPS, ATR-FTIR, Raman spectroscopy, NMR and H
2 -TPR analyses. The antioxidant, in vitro biocompatibility, and antimicrobial activity of the fabricated composites have been evaluated. The results prove that the prepared materials exhibit antimicrobial, antioxidant, and anti-inflammatory activity, thus providing protection against infection and supporting tissue regeneration, these two key effects being of paramount importance for promoting wound healing., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023. Published by Elsevier B.V.)- Published
- 2023
- Full Text
- View/download PDF