1. Noneluting enzymatic antibiofilm coatings.
- Author
-
Pavlukhina SV, Kaplan JB, Xu L, Chang W, Yu X, Madhyastha S, Yakandawala N, Mentbayeva A, Khan B, and Sukhishvili SA
- Subjects
- Anti-Bacterial Agents chemistry, Anti-Bacterial Agents toxicity, Bacterial Proteins chemistry, Cell Differentiation drug effects, Cell Line, Cell Survival drug effects, Coated Materials, Biocompatible chemistry, Coated Materials, Biocompatible toxicity, Glycoside Hydrolases chemistry, Humans, Hydrogels chemistry, Polymethacrylic Acids chemistry, Staphylococcus epidermidis physiology, Surface Properties, Anti-Bacterial Agents pharmacology, Bacterial Proteins metabolism, Biofilms drug effects, Coated Materials, Biocompatible pharmacology, Glycoside Hydrolases metabolism
- Abstract
We developed a highly efficient, biocompatible surface coating that disperses bacterial biofilms through enzymatic cleavage of the extracellular biofilm matrix. The coating was fabricated by binding the naturally existing enzyme dispersin B (DspB) to surface-attached polymer matrices constructed via a layer-by-layer (LbL) deposition technique. LbL matrices were assembled through electrostatic interactions of poly(allylamine hydrochloride) (PAH) and poly(methacrylic acid) (PMAA), followed by chemical cross-linking with glutaraldehyde and pH-triggered removal of PMAA, producing a stable PAH hydrogel matrix used for DspB loading. The amount of DspB loaded increased linearly with the number of PAH layers in surface hydrogels. DspB was retained within these coatings in the pH range from 4 to 7.5. DspB-loaded coatings inhibited biofilm formation by two clinical strains of Staphylococcus epidermidis. Biofilm inhibition was ≥98% compared to mock-loaded coatings as determined by CFU enumeration. In addition, DspB-loaded coatings did not inhibit attachment or growth of cultured human osteoblast cells. We suggest that the use of DspB-loaded multilayer coatings presents a promising method for creating biocompatible surfaces with high antibiofilm efficiency, especially when combined with conventional antimicrobial treatment of dispersed bacteria.
- Published
- 2012
- Full Text
- View/download PDF